Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Bioresour Technol ; 247: 96-102, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28946100

ABSTRACT

Vegetable waste is one of the major organic residues available for sustainable bioenergy production. The aim of this work is to study the influence of pH-value on process stability, hydrolysis, degradation degree and methane production in two-stage anaerobic system. A mixture of vegetable wastes with carrot mousse, carrots, celery, cabbage and potatoes was treated in two-stage system at target pH-values 5.5 and 6 in acidification reactor (AR). At pH 6, high concentrations of organic acids were recorded whereas high amount of hydrolysate was produced at pH 5.5. The chemical oxygen demand (COD) concentration in the hydrolysate produced in AR was 21.85% higher at pH 6 compared to pH 5.5, whereas the overall specific methane yield was slightly higher at pH 5.5 (354.35±31.95 and 326.79±41.42Lkg-1 oDMadded, respectively). It could be shown, that the described two-stage system is well suited for manure-free digestion of vegetable waste.


Subject(s)
Bioreactors , Methane , Anaerobiosis , Manure , Vegetables
3.
Bioresour Technol ; 247: 7-13, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28942208

ABSTRACT

In order to investigate the influence of pressures up to 9bar absolute on the productivity of trickle-bed reactors for biological methanation of hydrogen and carbon dioxide, experiments were carried out in a continuously operated experimental plant with three identical reactors. The pressure increase promises a longer residence time and improved mass transfer of H2 due to higher gas partial pressures. The study covers effects of different pressures on important parameters like gas hourly space velocity, methane formation rate, conversion rates and product gas quality. The methane content of 64.13±3.81vol-% at 1.5bar could be increased up to 86.51±0.49vol-% by raising the pressure to 9bar. Methane formation rates of up to 4.28±0.26m3m-3d-1 were achieved. Thus, pressure increase could significantly improve reactor performance.


Subject(s)
Hydrogen , Methane , Bioreactors , Carbon Dioxide , Pressure
4.
Bioresour Technol ; 232: 72-78, 2017 May.
Article in English | MEDLINE | ID: mdl-28214447

ABSTRACT

The concept of pressurized two-stage anaerobic digestion integrates biogas production, purification and pressure boosting within one process. The produced methane-rich biogas can be fed into gas grids with considerably less purification effort. To investigate biogas production under high pressures up to 50bar, a lab scale two-stage anaerobic digestion system was constructed including one continuously operated pressurized methane reactor. This investigation examined the effects of different operating pressures in methane reactor (10, 25, 50bar) on biogas quantity and quality, pH value and process stability. By increasing operating pressures in methane reactor, the pH value decreased from 6.65 at 10bar to 6.55 at 50bar. Simultaneously, methane content increased from 79.08% at 10bar to 90.45% at 50bar. The results show that methane reactors can be operated up to 50bar pressure continuously representing a viable alternative to commonly used gas upgrading methods because of reduced purification effort.


Subject(s)
Biotechnology/methods , Pressure , Anaerobiosis , Biofuels/analysis , Biological Oxygen Demand Analysis , Bioreactors , Carbon Dioxide/analysis , Hydrogen-Ion Concentration , Methane/biosynthesis
5.
Bioresour Technol ; 200: 470-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26519699

ABSTRACT

Two-stage anaerobic digestion systems are often considered to be advantageous compared to one-stage processes. Although process conditions and fermenter setups are well examined, overall substrate degradation in these systems is controversially discussed. Therefore, the aim of this study was to investigate how substrates with different fibre and sugar contents (hay/straw, maize silage, sugar beet) influence the degradation rate and methane production. Intermediates and gas compositions, as well as methane yields and VS-degradation degrees were recorded. The sugar beet substrate lead to a higher pH-value drop 5.67 in the acidification reactor, which resulted in a six time higher hydrogen production in comparison to the hay/straw substrate (pH-value drop 5.34). As the achieved yields in the two-stage system showed a difference of 70.6% for the hay/straw substrate, and only 7.8% for the sugar beet substrate. Therefore two-stage systems seem to be only recommendable for digesting sugar rich substrates.


Subject(s)
Beta vulgaris/chemistry , Bioreactors , Methane/chemistry , Silage , Zea mays/chemistry , Anaerobiosis , Biofuels , Biological Oxygen Demand Analysis , Digestion , Equipment Design , Fermentation , Gases , Hydrogen/chemistry , Hydrogen-Ion Concentration
6.
Bioresour Technol ; 178: 194-200, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25451773

ABSTRACT

The aim of this study was to increase the biogas production from different substrates by applying a mechanical treatment only to the non-degraded digestate after the fermentation process in order to feed it back into the process. To evaluate this approach, digestates were grounded with a ball mill for four different treatment time periods (0, 2, 5, 10 min) and then the effects on the particle size, volatile organic substances, methane yield and degradation kinetic were measured. A decrease of volatile fatty acids based on this treatment was not detected. The mechanical treatment caused in maximum to a triplication of the methane yield and to a quadruplicating of the daily methane production.


Subject(s)
Refuse Disposal/methods , Stress, Mechanical , Anaerobiosis , Biofuels , Bioreactors/microbiology , Fatty Acids, Volatile/analysis , Kinetics , Methane/biosynthesis , Particle Size , Time Factors , Volatilization
7.
Environ Technol ; 36(1-4): 198-207, 2015.
Article in English | MEDLINE | ID: mdl-25413114

ABSTRACT

In many publications, primary fermentation is described as a limiting step in the anaerobic digestion of fibre-rich biomass [Eastman JA, Ferguson JF. Solubilization of particulacte carbon during the anaerobic digeston. J WPCF. 1981;53:352-366; Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng. 1985;27:1482-1489; Arntz HJ, Stoppok E, Buchholz K. Anaerobic hydroysis of beet pulp-discontiniuous experiments. Biotechnol Lett. 1985;7:113-118]. The microorganisms of the primary fermentation process differ widely from the methanogenic microorganisms [Pohland FG, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1:255-266]. To optimize the biogas process, a separation in two phases is suggested by many authors [Fox P, Pohland GK. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res. 1994;66:716-724; Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580]. To carry out the examination, a two-phase laboratory-scale biogas plant was established, with a physical phase separation. In previous studies, the regulation of the pH-value during the acid formation was usually carried out by the addition of sodium hydroxide [Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580; Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K. Production of hydrogen and methane from organic solid wastes by phase separation of anaerobic process. Bioresour Technol. 2007;98:1861-1865; Zoetemeyer RJ, van den Heuvel JC, Cohen A. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 1982;16:303-311]. A new technology without the use of additives was developed in which the pH-regulation is executed by the pH-dependent recycling of effluent from the anaerobic filter into the acidification reactor. During this investigation, the influence of the different target pH-values (5.5, 6.0, 7.0 and 7.5) on the degradation rate, the gas composition and the methane yield of the substrate maize silage was determined. With an increase in the target pH-value from 5.5 to 7.5, the acetic acid equivalent decreased by 88.1% and the chemical oxygen demand-concentration by 18.3% in the hydrolysate. In response, there was a 58% increase in the specific methane yield of the overall system. Contrary to earlier studies, a marked increase in biogas production and in substrate degradation was determined with increasing pH-values. However, these led to a successive approximation of a single-phase process. Based on these results, pH-values above 7.0 seem to be favourable for the digestion of fibre-rich substrates.


Subject(s)
Bacteria, Anaerobic/chemistry , Bacteria, Anaerobic/physiology , Bioreactors/microbiology , Culture Media/metabolism , Methane/metabolism , Models, Biological , Computer Simulation , Culture Media/chemistry , Hydrogen-Ion Concentration , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...