Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(21): 9918-9930, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31622099

ABSTRACT

In this article, we report the discovery of a series of 5-azaquinazolines as selective IRAK4 inhibitors. From modestly potent quinazoline 4, we introduced a 5-aza substitution to mask the 4-NH hydrogen bond donor (HBD). This allowed us to substitute the core with a 2-aminopyrazole, which showed large gains in cellular potency despite the additional formal HBD. Further optimization led to 6-cyanomethyl-5-azaquinazoline 13, a selective IRAK4 inhibitor, which proved efficacious in combination with ibrutinib, while showing very little activity as a single agent up to 100 mg/kg. This contrasted to previously reported IRAK4 inhibitors that exhibited efficacy in the same model as single agents and was attributed to the enhanced specificity of 13 toward IRAK4.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Lymphoma, Large B-Cell, Diffuse/drug therapy , Molecular Targeted Therapy , Myeloid Differentiation Factor 88/genetics , Quinazolines/chemistry , Quinazolines/pharmacology , Administration, Oral , Animals , Cell Line, Tumor , Drug Design , Female , Humans , Interleukin-1 Receptor-Associated Kinases/chemistry , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Models, Molecular , Mutation , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Quinazolines/administration & dosage , Quinazolines/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship , Tissue Distribution , Xenograft Model Antitumor Assays
2.
Bioorg Med Chem ; 26(4): 913-924, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29398441

ABSTRACT

We have developed a series of orally efficacious IRAK4 inhibitors, based on a scaffold hopping strategy and using rational structure based design. Efforts to tackle low permeability and high efflux in our previously reported pyrrolopyrimidine series (Scott et al., 2017) led to the identification of pyrrolotriazines which contained one less formal hydrogen bond donor and were intrinsically more lipophilic. Further optimisation of substituents on this pyrrolotriazine core culminated with the discovery of 30 as a promising in vivo probe to assess the potential of IRAK4 inhibition for the treatment of MyD88 mutant DLBCL in combination with a BTK inhibitor. When tested in an ABC-DLBCL model with a dual MyD88/CD79 mutation (OCI-LY10), 30 demonstrated tumour regressions in combination with ibrutinib.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Pyrroles/chemistry , Thiazines/chemistry , Animals , Binding Sites , Caco-2 Cells , Dogs , Drug Design , Half-Life , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Molecular Dynamics Simulation , Mutation , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Permeability/drug effects , Protein Kinases/chemistry , Protein Kinases/metabolism , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Structure-Activity Relationship , Thiazines/pharmacokinetics , Thiazines/pharmacology
3.
J Med Chem ; 60(24): 10071-10091, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29172502

ABSTRACT

Herein we report the optimization of a series of pyrrolopyrimidine inhibitors of interleukin-1 receptor associated kinase 4 (IRAK4) using X-ray crystal structures and structure based design to identify and optimize our scaffold. Compound 28 demonstrated a favorable physicochemical and kinase selectivity profile and was identified as a promising in vivo tool with which to explore the role of IRAK4 inhibition in the treatment of mutant MYD88L265P diffuse large B-cell lymphoma (DLBCL). Compound 28 was shown to be capable of demonstrating inhibition of NF-κB activation and growth of the ABC subtype of DLBCL cell lines in vitro at high concentrations but showed greater effects in combination with a BTK inhibitor at lower concentrations. In vivo, the combination of compound 28 and ibrutinib led to tumor regression in an ABC-DLBCL mouse model.


Subject(s)
Antineoplastic Agents/pharmacology , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Lymphoma, Large B-Cell, Diffuse/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Female , Humans , Interleukin-1 Receptor-Associated Kinases/chemistry , Lymphoma, Large B-Cell, Diffuse/genetics , Magnetic Resonance Spectroscopy , Male , Mice, SCID , Mutation , Myeloid Differentiation Factor 88/genetics , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/chemistry , Pyrroles/chemistry , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
4.
Nat Chem Biol ; 12(6): 444-51, 2016 06.
Article in English | MEDLINE | ID: mdl-27110679

ABSTRACT

Usher syndrome type III (USH3), characterized by progressive deafness, variable balance disorder and blindness, is caused by destabilizing mutations in the gene encoding the clarin-1 (CLRN1) protein. Here we report a new strategy to mitigate hearing loss associated with a common USH3 mutation CLRN1(N48K) that involves cell-based high-throughput screening of small molecules capable of stabilizing CLRN1(N48K), followed by a secondary screening to eliminate general proteasome inhibitors, and finally an iterative process to optimize structure-activity relationships. This resulted in the identification of BioFocus 844 (BF844). To test the efficacy of BF844, we developed a mouse model that mimicked the progressive hearing loss associated with USH3. BF844 effectively attenuated progressive hearing loss and prevented deafness in this model. Because the CLRN1(N48K) mutation causes both hearing and vision loss, BF844 could in principle prevent both sensory deficiencies in patients with USH3. Moreover, the strategy described here could help identify drugs for other protein-destabilizing monogenic disorders.


Subject(s)
Disease Models, Animal , Membrane Proteins/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridazines/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use , Usher Syndromes/drug therapy , Animals , High-Throughput Screening Assays , Humans , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridazines/therapeutic use , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Usher Syndromes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...