Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Ann Neurol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845484

ABSTRACT

OBJECTIVE: The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS: Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS: Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION: This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024.

2.
Neurology ; 102(12): e209417, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38833650

ABSTRACT

BACKGROUND AND OBJECTIVES: Traumatic brain injury (TBI) is a concern for US service members and veterans (SMV), leading to heterogeneous psychological and cognitive outcomes. We sought to identify neuropsychological profiles of mild TBI (mTBI) and posttraumatic stress disorder (PTSD) among the largest SMV sample to date. METHODS: We analyzed cross-sectional baseline data from SMV with prior combat deployments enrolled in the ongoing Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium prospective longitudinal study. Latent profile analysis identified symptom profiles using 35 indicators, including physical symptoms, depression, quality of life, sleep quality, postconcussive symptoms, and cognitive performance. It is important to note that the profiles were determined independently of mTBI and probable PTSD status. After profile identification, we examined associations between demographic variables, mTBI characteristics, and PTSD symptoms with symptom profile membership. RESULTS: The analytic sample included 1,659 SMV (mean age 41.1 ± 10.0 years; 87% male); among them 29% (n = 480) had a history of non-deployment-related mTBI only, 14% (n = 239) had deployment-related mTBI only, 36% (n = 602) had both non-deployment and deployment-related mTBI, and 30% (n = 497) met criteria for probable PTSD. A 6-profile model had the best fit, with separation on all indicators (p < 0.001). The model revealed distinct neuropsychological profiles, representing a combination of 3 self-reported functioning patterns: high (HS), moderate (MS), and low (LS), and 2 cognitive performance patterns: high (HC) and low (LC). The profiles were (1) HS/HC: n=301, 18.1%; (2) HS/LC: n=294, 17.7%; (3) MS/HC: n=359, 21.6%; (4) MS/LC: n=316, 19.0%; (5) LS/HC: n=228, 13.7%; and (6) LS/LC: n=161, 9.7%. SMV with deployment-related mTBI tended to be grouped into lower functioning profiles and were more likely to meet criteria for probable PTSD. Conversely, SMV with no mTBI exposure or non-deployment-related mTBI were clustered in higher functioning profiles and had a lower likelihood of meeting criteria for probable PTSD. DISCUSSION: Findings suggest varied symptom and functional profiles in SMV, influenced by injury context and probable PTSD comorbidity. Despite diagnostic challenges, comprehensive assessment of functioning and cognition can detect subtle differences related to mTBI and PTSD, revealing distinct neuropsychological profiles. Prioritizing early treatment based on these profiles may improve prognostication and support efficient recovery.


Subject(s)
Brain Concussion , Military Personnel , Neuropsychological Tests , Stress Disorders, Post-Traumatic , Humans , Male , Adult , Female , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/etiology , Brain Concussion/psychology , Brain Concussion/complications , Brain Concussion/epidemiology , Cross-Sectional Studies , Middle Aged , Military Personnel/psychology , Longitudinal Studies , Veterans/psychology , Prospective Studies , Military Deployment/psychology , Post-Concussion Syndrome/psychology , Post-Concussion Syndrome/epidemiology , Quality of Life
3.
Article in English | MEDLINE | ID: mdl-38848287

ABSTRACT

Objective: This proof-of-concept study was to investigate the relationship between photobiomodulation (PBM) and neuromuscular control. Background: The effects of concussion and repetitive head acceleration events (RHAEs) are associated with decreased motor control and balance. Simultaneous intranasal and transcranial PBM (itPBM) is emerging as a possible treatment for cognitive and psychological sequelae of brain injury with evidence of remote effects on other body systems. Methods: In total, 43 (39 male) participants, age 18-69 years (mean, 49.5; SD, 14.45), with a self-reported history of concussive and/or RHAE and complaints of their related effects (e.g., mood dysregulation, impaired cognition, and poor sleep quality), completed baseline and posttreatment motor assessments including clinical reaction time, grip strength, grooved pegboard, and the Mini Balance Evaluation Systems Test (MiniBEST). In the 8-week interim, participants self-administered itPBM treatments by wearing a headset comprising four near-infrared light-emitting diodes (LED) and a near-infrared LED nasal clip. Results: Posttreatment group averages in reaction time, MiniBEST reactive control subscores, and bilateral grip strength significantly improved with effect sizes of g = 0.75, g = 0.63, g = 0.22 (dominant hand), and g = 0.34 (nondominant hand), respectively. Conclusion: This study provides a framework for more robust studies and suggests that itPBM may serve as a noninvasive solution for improved neuromuscular health.

4.
J Neurotrauma ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38323539

ABSTRACT

Intimate partner violence (IPV) is a significant, global public health concern. Women, individuals with historically underrepresented identities, and disabilities are at high risk for IPV and tend to experience severe injuries. There has been growing concern about the risk of exposure to IPV-related head trauma, resulting in IPV-related brain injury (IPV-BI), and its health consequences. Past work suggests that a significant proportion of women exposed to IPV experience IPV-BI, likely representing a distinct phenotype compared with BI of other etiologies. An IPV-BI often co-occurs with psychological trauma and mental health complaints, leading to unique issues related to identifying, prognosticating, and managing IPV-BI outcomes. The goal of this review is to identify important gaps in research and clinical practice in IPV-BI and suggest potential solutions to address them. We summarize IPV research in five key priority areas: (1) unique considerations for IPV-BI study design; (2) understanding non-fatal strangulation as a form of BI; (3) identifying objective biomarkers of IPV-BI; (4) consideration of the chronicity, cumulative and late effects of IPV-BI; and (5) BI as a risk factor for IPV engagement. Our review concludes with a call to action to help investigators develop ecologically valid research studies addressing the identified clinical-research knowledge gaps and strategies to improve care in individuals exposed to IPV-BI. By reducing the current gaps and answering these calls to action, we will approach IPV-BI in a trauma-informed manner, ultimately improving outcomes and quality of life for those impacted by IPV-BI.

5.
JAMA Netw Open ; 6(11): e2343410, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37966838

ABSTRACT

Importance: Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective: To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants: This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure: Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures: Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results: A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (ß = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (ß = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (ß = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (ß=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance: In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Adolescent , Humans , Child , Female , Male , Cohort Studies , Retrospective Studies , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cerebellum/diagnostic imaging , Atrophy
6.
Neuropsychology ; 37(3): 233-236, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37011158

ABSTRACT

This special issue brings together different methods for improving harmonization of existing (i.e., legacy) and future research data. We expect that when these methods are fully deployed, they will benefit research on various clinical conditions by allowing researchers to explore more nuanced questions using larger and more ethnically, socially, and economically diverse samples than previously available. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

7.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-36712107

ABSTRACT

Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.

8.
Neuropsychol Rev ; 33(1): 42-121, 2023 03.
Article in English | MEDLINE | ID: mdl-33721207

ABSTRACT

There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.


Subject(s)
Brain Concussion , White Matter , Adult , Humans , Child , Brain Concussion/diagnostic imaging , Diffusion Tensor Imaging/methods , Neuroimaging , Longitudinal Studies , Brain/diagnostic imaging
9.
Neuropsychology ; 37(4): 398-408, 2023 May.
Article in English | MEDLINE | ID: mdl-35797175

ABSTRACT

OBJECTIVE: The variety of instruments used to assess posttraumatic stress disorder (PTSD) allows for flexibility, but also creates challenges for data synthesis. The objective of this work was to use a multisite mega analysis to derive quantitative recommendations for equating scores across measures of PTSD severity. METHOD: Empirical Bayes harmonization and linear models were used to describe and mitigate site and covariate effects. Quadratic models for converting scores across PTSD assessments were constructed using bootstrapping and tested on hold out data. RESULTS: We aggregated 17 data sources and compiled an n = 5,634 sample of individuals who were assessed for PTSD symptoms. We confirmed our hypothesis that harmonization and covariate adjustments would significantly improve inference of scores across instruments. Harmonization significantly reduced cross-dataset variance (28%, p < .001), and models for converting scores across instruments were well fit (median R² = 0.985) with an average root mean squared error of 1.46 on sum scores. CONCLUSIONS: These methods allow PTSD symptom severity to be placed on multiple scales and offers interesting empirical perspectives on the role of harmonization in the behavioral sciences. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Stress Disorders, Post-Traumatic , Veterans , Humans , Stress Disorders, Post-Traumatic/diagnosis , Bayes Theorem , Severity of Illness Index
10.
Hum Brain Mapp ; 44(5): 1888-1900, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36583562

ABSTRACT

Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , White Matter , Humans , Adult , White Matter/pathology , Neuropsychological Tests , Brain Injuries/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain
11.
Behav Res Methods ; 55(6): 2813-2837, 2023 09.
Article in English | MEDLINE | ID: mdl-35953660

ABSTRACT

Researcher degrees of freedom can affect the results of hypothesis tests and consequently, the conclusions drawn from the data. Previous research has documented variability in accuracy, speed, and documentation of output across various statistical software packages. In the current investigation, we conducted Pearson's chi-square test of independence, Spearman's rank-ordered correlation, Kruskal-Wallis one-way analysis of variance, Wilcoxon Mann-Whitney U rank-sum tests, and Wilcoxon signed-rank tests, along with estimates of skewness and kurtosis, on large, medium, and small samples of real and simulated data in SPSS, SAS, Stata, and R and compared the results with those obtained through hand calculation using the raw computational formulas. Multiple inconsistencies were found in the results produced between statistical packages due to algorithmic variation, computational error, and statistical output. The most notable inconsistencies were due to algorithmic variations in the computation of Pearson's chi-square test conducted on 2 × 2 tables, where differences in p-values reported by different software packages ranged from .005 to .162, largely as a function of sample size. We discuss how such inconsistencies may influence the conclusions drawn from the results of statistical analyses depending on the statistical software used, and we urge researchers to analyze their data across multiple packages to check for inconsistencies and report details regarding the statistical procedure used for data analysis.


Subject(s)
Research Design , Software , Humans , Sample Size , Chi-Square Distribution , Correlation of Data
12.
NeuroRehabilitation ; 51(1): 133-150, 2022.
Article in English | MEDLINE | ID: mdl-35404295

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) often results in chronic impairments to cognitive function, and these may be related to disrupted functional connectivity (FC) of the brain at rest. OBJECTIVE: To investigate changes in default mode network (DMN) FC in adults with chronic TBI following 40 hours of auditory processing speed training. METHODS: Eleven adults with chronic TBI underwent 40-hours of auditory processing speed training over 13-weeks and seven adults with chronic TBI were assigned to a non-intervention control group. For all participants, resting-state FC and cognitive and self-reported function were measured at baseline and at a follow-up visit 13-weeks later. RESULTS: No significant group differences in cognitive function or resting-state FC were observed at baseline. Following training, the intervention group demonstrated objective and subjective improvements on cognitive measures with moderate-to-large effect sizes. Repeated measures ANCOVAs revealed significant (p < 0.001) group×time interactions, suggesting training-related changes in DMN FC, and semipartial correlations demonstrated that these were associated with changes in cognitive functioning. CONCLUSIONS: Changes in the FC between the DMN and other resting-state networks involved in the maintenance and manipulation of internal information, attention, and sensorimotor functioning may be facilitated through consistent participation in plasticity-based auditory processing speed training in adults with chronic TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injury, Chronic , Adult , Brain/diagnostic imaging , Brain Injuries, Traumatic/complications , Brain Mapping/methods , Cognition , Humans , Magnetic Resonance Imaging/methods , Neuropsychological Tests , Pilot Projects
13.
Cogn Behav Neurol ; 34(4): 259-274, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34851864

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is associated with considerable mortality and morbidity in adolescents, but positive outcomes are possible. Resilience is the concept that some individuals flourish despite significant adversity. OBJECTIVE: To determine if there is a relationship between resilience-promoting factors that are known to promote resilience and white matter (WM) microstructure 1 year after complicated mild TBI or moderate or severe TBI that is sustained by adolescents. METHOD: We examined the relationship between performance on a self-report measure of resilience-promoting factors and WM integrity assessed by diffusion tensor imaging in a group of adolescents who had sustained either a TBI (n = 38) or an orthopedic injury (OI) (n = 23). RESULTS: Immediately following injury, the individuals with TBI and the OI controls had comparable levels of resilience-promoting factors; however, at 1 year post injury, the TBI group endorsed fewer resilience-promoting factors and exhibited WM disruption compared with the OI controls. The individuals with TBI who had more resilience-promoting factors at 1 year post injury exhibited increased WM integrity, but the OI controls did not. Findings were particularly strong for the following structures: anterior corona radiata, anterior limb of the internal capsule, and genu of the corpus callosum-structures that are implicated in social cognition and are frequently disrupted after TBI. Relationships were notable for caregiver and community-level resilience-promoting factors. CONCLUSION: The current findings are some of the first to indicate neurobiological evidence of previously noted buffering effects of resilience-promoting factors in individuals with TBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , White Matter , Adolescent , Brain , Brain Injuries, Traumatic/diagnostic imaging , Corpus Callosum , Diffusion Tensor Imaging , Humans , White Matter/diagnostic imaging
14.
NeuroRehabilitation ; 49(2): 267-278, 2021.
Article in English | MEDLINE | ID: mdl-34420987

ABSTRACT

BACKGROUND: Adults with chronic traumatic brain injury (TBI) may experience long-term deficits in multiple cognitive domains. Higher-order functions, such as verbal memory, are impacted by deficits in the ability to acquire verbal information. OBJECTIVE: This study investigated the effects of a neuroplasticity-based computerized cognitive remediation program for auditory information processing in adults with a chronic TBI. METHODS: Forty-eight adults with TBI were randomly assigned to an intervention or control group. Both groups underwent a neuropsychological assessment at baseline and post-training. The Intervention group received 40 one-hour cognitive training sessions with the Brain Fitness Program. RESULTS: The intervention group improved in performance on measures of the Woodcock-Johnson-III Understanding Directions subtest and Trail Making Test Part-A. They also reported improvement on the cognitive domain of the Cognitive Self-Report Questionnaire. CONCLUSIONS: The present study demonstrated that a neuroplasticity-based computerized cognitive remediation program may improve objective and subjective cognitive function in adults with TBI several years post-injury.


Subject(s)
Brain Injuries, Traumatic , Brain Injury, Chronic , Adult , Brain Injuries, Traumatic/complications , Cognition , Humans , Neuronal Plasticity , Neuropsychological Tests
15.
Neurology ; 2021 May 28.
Article in English | MEDLINE | ID: mdl-34050006

ABSTRACT

OBJECTIVE: Our study addressed aims: (1) test the hypothesis that moderate-severe TBI in pediatric patients is associated with widespread white matter (WM) disruption; (2) test the hypothesis that age and sex impact WM organization after injury; and (3) examine associations between WM organization and neurobehavioral outcomes. METHODS: Data from ten previously enrolled, existing cohorts recruited from local hospitals and clinics were shared with the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric msTBI working group. We conducted a coordinated analysis of diffusion MRI (dMRI) data using the ENIGMA dMRI processing pipeline. RESULTS: Five hundred and seven children and adolescents (244 with complicated mild to severe TBI [msTBI] and 263 controls) were included. Patients were clustered into three post-injury intervals: acute/subacute - <2 months, post-acute - 2-6 months, chronic - 6+ months. Outcomes were dMRI metrics and post-injury behavioral problems as indexed by the Child Behavior Checklist (CBCL). Our analyses revealed altered WM diffusion metrics across multiple tracts and all post-injury intervals (effect sizes ranging between d=-0.5 to -1.3). Injury severity is a significant contributor to the extent of WM alterations but explained less variance in dMRI measures with increasing time post-injury. We observed a sex-by-group interaction: females with TBI had significantly lower fractional anisotropy in the uncinate fasciculus than controls (𝞫=0.043), which coincided with more parent-reported behavioral problems (𝞫=-0.0027). CONCLUSIONS: WM disruption after msTBI is widespread, persistent, and influenced by demographic and clinical variables. Future work will test techniques for harmonizing neurocognitive data, enabling more advanced analyses to identify symptom clusters and clinically-meaningful patient subtypes.

16.
Brain Imaging Behav ; 15(2): 585-613, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33409819

ABSTRACT

Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.


Subject(s)
Brain Injuries, Traumatic , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Brain Injuries, Traumatic/diagnostic imaging , Humans , Magnetic Resonance Imaging
17.
Brain Imaging Behav ; 15(2): 475-503, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33405096

ABSTRACT

Intimate partner violence includes psychological aggression, physical violence, sexual violence, and stalking from a current or former intimate partner. Past research suggests that exposure to intimate partner violence can impact cognitive and psychological functioning, as well as neurological outcomes. These seem to be compounded in those who suffer a brain injury as a result of trauma to the head, neck or body due to physical and/or sexual violence. However, our understanding of the neurobehavioral and neurobiological effects of head trauma in this population is limited due to factors including difficulty in accessing/recruiting participants, heterogeneity of samples, and premorbid and comorbid factors that impact outcomes. Thus, the goal of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium Intimate Partner Violence Working Group is to develop a global collaboration that includes researchers, clinicians, and other key community stakeholders. Participation in the working group can include collecting harmonized data, providing data for meta- and mega-analysis across sites, or stakeholder insight on key clinical research questions, promoting safety, participant recruitment and referral to support services. Further, to facilitate the mega-analysis of data across sites within the working group, we provide suggestions for behavioral surveys, cognitive tests, neuroimaging parameters, and genetics that could be used by investigators in the early stages of study design. We anticipate that the harmonization of measures across sites within the working group prior to data collection could increase the statistical power in characterizing how intimate partner violence-related head trauma impacts long-term physical, cognitive, and psychological health.


Subject(s)
Craniocerebral Trauma , Intimate Partner Violence , Anxiety , Craniocerebral Trauma/diagnostic imaging , Craniocerebral Trauma/epidemiology , Humans , Interpersonal Relations , Magnetic Resonance Imaging
18.
J Neurotrauma ; 38(1): 133-143, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32503385

ABSTRACT

This study investigated patterns of cortical organization in adolescents who had sustained a traumatic brain injury (TBI) during early childhood to determine ways in which early head injury may alter typical brain development. Increased gyrification in other patient populations is associated with polymicrogyria and aberrant development, but this has not been investigated in TBI. Seventeen adolescents (mean age = 14.1 ± 2.4) who sustained a TBI between 1-8 years of age, and 17 demographically-matched typically developing children (TDC) underwent a high-resolution, T1-weighted 3-Tesla magnetic resonance imaging (MRI) at 6-15 years post-injury. Cortical white matter volume and organization was measured using FreeSurfer's Local Gyrification Index (LGI). Despite a lack of significant difference in white matter volume, participants with TBI demonstrated significantly increased LGI in several cortical regions that are among those latest to mature in normal development, including left parietal association areas, bilateral dorsolateral and medial frontal areas, and the right posterior temporal gyrus, relative to the TDC group. Additionally, there was no evidence of increased surface area in the regions that demonstrated increased LGI. Higher Vineland-II Socialization scores were associated with decreased LGI in right frontal and temporal regions. The present results suggest an altered pattern of expected development in cortical gyrification in the TBI group, with changes in late-developing frontal and parietal association areas. Such changes in brain structure may underlie cognitive and behavioral deficits associated with pediatric TBI. Alternatively, increased gyrification following TBI may represent a compensatory mechanism that allows for typical development of cortical surface area, despite reduced brain volume.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Socialization , Adolescent , Brain Injuries, Traumatic/psychology , Child , Female , Humans , Magnetic Resonance Imaging , Male
19.
Brain Imaging Behav ; 15(2): 576-584, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32720179

ABSTRACT

Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor.


Subject(s)
Athletic Injuries , Brain Concussion , Brain Injuries , Athletic Injuries/diagnostic imaging , Brain Concussion/diagnostic imaging , Brain Concussion/epidemiology , Brain Concussion/etiology , Humans , Magnetic Resonance Imaging , Reproducibility of Results
20.
Front Neurol ; 12: 734055, 2021.
Article in English | MEDLINE | ID: mdl-35002913

ABSTRACT

Plasticity is often implicated as a reparative mechanism when addressing structural and functional brain development in young children following traumatic brain injury (TBI); however, conventional imaging methods may not capture the complexities of post-trauma development. The present study examined the cingulum bundles and perforant pathways using diffusion tensor imaging (DTI) in 21 children and adolescents (ages 10-18 years) 5-15 years after sustaining early childhood TBI in comparison with 19 demographically-matched typically-developing children. Verbal memory and executive functioning were also evaluated and analyzed in relation to DTI metrics. Beyond the expected direction of quantitative DTI metrics in the TBI group, we also found qualitative differences in the streamline density of both pathways generated from DTI tractography in over half of those with early TBI. These children exhibited hypertrophic cingulum bundles relative to the comparison group, and the number of tract streamlines negatively correlated with age at injury, particularly in the late-developing anterior regions of the cingulum; however, streamline density did not relate to executive functioning. Although streamline density of the perforant pathway was not related to age at injury, streamline density of the left perforant pathway was significantly and positively related to verbal memory scores in those with TBI, and a moderate effect size was found in the right hemisphere. DTI tractography may provide insight into developmental plasticity in children post-injury. While traditional DTI metrics demonstrate expected relations to cognitive performance in group-based analyses, altered growth is reflected in the white matter structures themselves in some children several years post-injury. Whether this plasticity is adaptive or maladaptive, and whether the alterations are structure-specific, warrants further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...