Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 491: 167-178, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28027466

ABSTRACT

This paper concerns experimental investigation of the sequenced flocculation of latex particles in a Taylor-Couette reactor. The aim of this work was to investigate the evolution of both the size and the shape of aggregates under sequenced hydrodynamics. A number of studies have focused on the evolution of the aggregate size or size distribution during steps of growth-breakage-regrowth, but aggregates generally experience steps of breakage-regrowth on repeated occasions in real operating conditions (passages near the impeller or during the transfer processes, for example). The experiments conducted in this work consisted thus of an alternation of six steps with alternately low and high shear rates under turbulent conditions. The particle size distributions were monitored throughout the sequencing, and the circularity and convexity (shape parameters) distributions were measured, enabling a more precise description of the entire floc population, rather than a fractal dimension. While the aggregate size distribution was clearly controlled by hydrodynamics, the shape distributions continuously evolved during the sequencing. The main new finding of our work notes the independence between the aggregate shape and hydrodynamics. Indeed, after multiples steps of breakage-regrowth, regardless of the aggregate size distribution and hydrodynamics, the aggregate shape seemed to reach a unique steady-state morphological distribution.

2.
Phys Rev E ; 94(5-1): 053120, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967016

ABSTRACT

We provide Reynolds averaged azimuthal velocity profiles, measured in a Taylor-Couette system in turbulent flow, at medium Reynolds (7800 < Re < 18000) number with particle image velocimetry technique. We find that in the wall regions, close to the inner and outer cylinders, the azimuthal velocity profile reveals a significant deviation from classical logarithmic law. In order to propose a new law of the wall, the profile of turbulent mixing length was estimated from data processing; it was shown to behave nonlinearly with the radial wall distance. Based on this turbulent mixing length expression, a law of the wall was proposed for the Reynolds averaged azimuthal velocity, derived from momentum balance and validated by comparison to different data. In addition, the profile of viscous dissipation rate was investigated and compared to the global power needed to maintain the inner cylinder in rotation.

3.
Water Res ; 46(17): 5499-5508, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22898671

ABSTRACT

Detachment is one of the major processes determining the physical structure and microbial functionalities of biofilms. To predict detachment, it is necessary to take the mechanical properties of the biofilm and the effect of both hydrodynamic and growth conditions into account. In this work, experiments were conducted with biofilms developed under various shear stresses and with various substrate natures. In addition, two cases were considered in order to differentiate between the effect of hydrodynamic factors and growth factors: the biofilms were directly grown under the targeted shear stress (τ) condition or they were precultivated under very low shear stress (0.01 Pa) and then exposed to high shear stress in the range of 0.1-13 Pa. An exponential and asymptotic decrease of the biofilm thickness and mass with increasing τ was observed in both cases. On contrary density, expressed as the biofilm dry mass on a known substratum divided by the average thickness increased with τ. Denitrifying biofilms always showed greater thickness and density than oxic biofilms. These results showed the presence of a compact basal layer that resisted shear stresses as high as 13 Pa whatever the culture conditions. Above this basal layer, the cohesion was lower and depended on the shear stress applied during biofilm development. The application of shear stress to the biofilms resulted in both detachment and compression, but detachment prevailed for the upper part of the biofilms and compression prevailed for the basal layers. A model of biofilm structure underlying the stratified character of this aggregate is given in terms of density and cohesion.


Subject(s)
Biofilms/growth & development , Stress, Mechanical , Hydrodynamics
4.
J Food Sci ; 76(5): E384-91, 2011.
Article in English | MEDLINE | ID: mdl-22417428

ABSTRACT

UNLABELLED: Many food recipes entail several homogenization steps for solid particles in hot or cold viscous liquids, such as pureed fruit and sugar, jam or sauce with mushroom pieces. Unfortunately, these unavoidable processes induce damage to the solid particles. To date, little is known of the extent and nature of the damage caused. Consequently, few clear guidelines are available for monitoring solid particle integrity when mixing solid/liquid suspensions in an agitated tank. In this study, an attempt is made to quantify the impact of various physical parameters including the influence of the rotational speed of the impeller and the processing time on particle attrition, when a suspension of large visco-elastic particles in a highly viscous fluid is mixed under isothermal condition. Pectin gel particles were immerged in a viscous liquid and homogenized for various times and rotational speeds, while the evolution of the particle's morphological parameters was monitored. Then, a set of dimensionless numbers governing the attrition mechanism is established and some empirical process relationships are proposed to correlate these numbers to the morphological characteristics and mass balance ratios. From the conditions observed, it is clear that 2 dimensionless ratios could be responsible for a change in the damaging mechanisms. These 2 ratios are the Froude and impeller rotation numbers. Finally, in the conditions tested, mass balance ratios appear to be mainly sensitive to the impeller rotational number, while the shape ratios are both impacted by the Froude and impeller rotational numbers. PRACTICAL APPLICATION: Damage to solid particles suspended in a stirred vessel reduce the final product quality in industrial cooking processes. Examples of this are fruit in jam or sauces with mushroom pieces. The attrition phenomenon was measured and the influences of the impeller rotational speed and processing time were evaluated quantitatively in function of dimensionless numbers. This study contributes key elements for the monitoring of damage to solids with a view to retaining solid integrity.


Subject(s)
Cooking/methods , Viscosity , Bioreactors , Models, Theoretical , Particle Size , Rotation
5.
J Colloid Interface Sci ; 292(2): 413-28, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16054637

ABSTRACT

This study focuses on the relation among hydrodynamics, physicochemical conditions, and floc size. During ortho-kinetic flocculation, the floc size is controlled by a balance between hydrodynamic stress and aggregate strength. Special attention was paid to the influence of a hydrodynamic sequencing on both the aggregate strength and the flocculation processes. Experimental research was conducted in a 1-L jar for two different pH values. The hydrodynamic sequencing was made up of successive slow and rapid mixing periods, and different slow mixing intensities were studied. First, the large floc size was shown to decrease with increasing velocity gradient (G), with an expected trend (d proportional variant epsilon(-1/4)). Then, the aggregate strength was shown to depend on two main factors: the flocculation history and the physicochemical conditions, which control the cohesion forces between primary particles. Finally, flocculation processes are discussed in terms of aggregation and breakup phenomena, with relation to local hydrodynamics and physicochemical conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...