Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 630(8018): 836-840, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768634

ABSTRACT

Interactions between exoplanetary atmospheres and internal properties have long been proposed to be drivers of the inflation mechanisms of gaseous planets and apparent atmospheric chemical disequilibrium conditions1. However, transmission spectra of exoplanets have been limited in their ability to observationally confirm these theories owing to the limited wavelength coverage of the Hubble Space Telescope (HST) and inferences of single molecules, mostly H2O (ref. 2). In this work, we present the panchromatic transmission spectrum of the approximately 750 K, low-density, Neptune-sized exoplanet WASP-107b using a combination of HST Wide Field Camera 3 (WFC3) and JWST Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). From this spectrum, we detect spectroscopic features resulting from H2O (21σ), CH4 (5σ), CO (7σ), CO2 (29σ), SO2 (9σ) and NH3 (6σ). The presence of these molecules enables constraints on the atmospheric metal enrichment (M/H is 10-18× solar3), vertical mixing strength (log10Kzz = 8.4-9.0 cm2 s-1) and internal temperature (>345 K). The high internal temperature is suggestive of tidally driven inflation4 acting on a Neptune-like internal structure, which can naturally explain the large radius and low density of the planet. These findings suggest that eccentricity-driven tidal heating is a critical process governing atmospheric chemistry and interior-structure inferences for most of the cool (<1,000 K) super-Earth-to-Saturn-mass exoplanet population.

2.
Nature ; 623(7988): 709-712, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37993572

ABSTRACT

The abundances of main carbon- and oxygen-bearing gases in the atmospheres of giant exoplanets provide insights into atmospheric chemistry and planet formation processes1,2. Thermochemistry suggests that methane (CH4) should be the dominant carbon-bearing species below about 1,000 K over a range of plausible atmospheric compositions3; this is the case for the solar system planets4 and has been confirmed in the atmospheres of brown dwarfs and self-luminous, directly imaged exoplanets5. However, CH4 has not yet been definitively detected with space-based spectroscopy in the atmosphere of a transiting exoplanet6-11, but a few detections have been made with ground-based, high-resolution transit spectroscopy12,13 including a tentative detection for WASP-80b (ref. 14). Here we report transmission and emission spectra spanning 2.4-4.0 µm of the 825 K warm Jupiter WASP-80b taken with the NIRCam instrument of the JWST, both of which show strong evidence of CH4 at greater than 6σ significance. The derived CH4 abundances from both viewing geometries are consistent with each other and with solar to sub-solar C/O and around five times solar metallicity, which is consistent with theoretical predictions15-17.

3.
Nature ; 620(7973): 292-298, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37257843

ABSTRACT

Close-in giant exoplanets with temperatures greater than 2,000 K ('ultra-hot Jupiters') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1-3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3-12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13 instrument on the JWST. The data span 0.85 to 2.85 µm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σ confidence) and evidence for optical opacity, possibly attributable to H-, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance ('metallicity', [Formula: see text] times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators.

4.
Nature ; 614(7949): 670-675, 2023 02.
Article in English | MEDLINE | ID: mdl-36623550

ABSTRACT

The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1-4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5-9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 µm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.

5.
Nature ; 614(7949): 664-669, 2023 02.
Article in English | MEDLINE | ID: mdl-36623549

ABSTRACT

Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3-5 and high-resolution ground-based6-8 facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 µm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5σ) and H2O (21.5σ), and identify SO2 as the source of absorption at 4.1 µm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10.

6.
Nature ; 614(7949): 653-658, 2023 02.
Article in English | MEDLINE | ID: mdl-36623551

ABSTRACT

Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. 1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0-4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs. 3,4,) or disequilibrium processes in the upper atmosphere (for example, refs. 5,6).

8.
Nature ; 598(7882): 580-584, 2021 10.
Article in English | MEDLINE | ID: mdl-34707303

ABSTRACT

Measurements of the atmospheric carbon (C) and oxygen (O) relative to hydrogen (H) in hot Jupiters (relative to their host stars) provide insight into their formation location and subsequent orbital migration1,2. Hot Jupiters that form beyond the major volatile (H2O/CO/CO2) ice lines and subsequently migrate post disk-dissipation are predicted have atmospheric carbon-to-oxygen ratios (C/O) near 1 and subsolar metallicities2, whereas planets that migrate through the disk before dissipation are predicted to be heavily polluted by infalling O-rich icy planetesimals, resulting in C/O < 0.5 and super-solar metallicities1,2. Previous observations of hot Jupiters have been able to provide bounded constraints on either H2O (refs. 3-5) or CO (refs. 6,7), but not both for the same planet, leaving uncertain4 the true elemental C and O inventory and subsequent C/O and metallicity determinations. Here we report spectroscopic observations of a typical transiting hot Jupiter, WASP-77Ab. From these, we determine the atmospheric gas volume mixing ratio constraints on both H2O and CO (9.5 × 10-5-1.5 × 10-4 and 1.2 × 10-4-2.6 × 10-4, respectively). From these bounded constraints, we are able to derive the atmospheric C/H ([Formula: see text] × solar) and O/H ([Formula: see text] × solar) abundances and the corresponding atmospheric carbon-to-oxygen ratio (C/O = 0.59 ± 0.08; the solar value is 0.55). The sub-solar (C+O)/H ([Formula: see text] × solar) is suggestive of a metal-depleted atmosphere relative to what is expected for Jovian-like planets1 while the near solar value of C/O rules out the disk-free migration/C-rich2 atmosphere scenario.

9.
Science ; 346(6211): 838-41, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25301972

ABSTRACT

Exoplanets that orbit close to their host stars are much more highly irradiated than their solar system counterparts. Understanding the thermal structures and appearances of these planets requires investigating how their atmospheres respond to such extreme stellar forcing. We present spectroscopic thermal emission measurements as a function of orbital phase ("phase-curve observations") for the highly irradiated exoplanet WASP-43b spanning three full planet rotations using the Hubble Space Telescope. With these data, we construct a map of the planet's atmospheric thermal structure, from which we find large day-night temperature variations at all measured altitudes and a monotonically decreasing temperature with pressure at all longitudes. We also derive a Bond albedo of 0.18(-0.12)(+0.07) and an altitude dependence in the hot-spot offset relative to the substellar point.

SELECTION OF CITATIONS
SEARCH DETAIL
...