Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 40(12): 3735-45, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25283165

ABSTRACT

The 5-hydroxytryptamine (5-HT) transporter (5-HTT) is believed to play a key role in both normal and pathological psychological states. Much previous data suggest that the s allele of the polymorphic regulatory region of the 5-HTT gene promoter is associated with reduced 5-HTT expression and vulnerability to psychiatric disorders, including anxiety and depression. In comparison, the l allele, which increases 5-HTT expression, is generally considered protective. However, recent data link this allele to both abnormal 5-HT signalling and psychopathic traits. Here, we studied the processing of aversive and rewarding cues in transgenic mice that over-express the 5-HTT (5-HTTOE mice). Compared with wild-type mice, 5-HTTOE mice froze less in response to both a tone that had previously been paired with footshock, and the conditioning context. In addition, on a decision-making T-maze task, 5-HTTOE mice displayed reduced preference for a larger, delayed reward and increased preference for a smaller, immediate reward, suggesting increased impulsiveness compared with wild-type mice. However, further inspection of the data revealed that 5-HTTOE mice displayed a relative insensitivity to reward magnitude, irrespective of delay. In contrast, 5-HTTOE mice appeared normal on tests of spatial working and reference memory, which required an absolute choice between options associated with either reward or no reward. Overall, the present findings suggest that 5-HTT over-expression results in a reduced sensitivity to both positive and negative reinforcers. Thus, these data show that increased 5-HTT expression has some maladaptive effects, supporting recent suggestions that l allele homozygosity may be a potential risk factor for disabling psychiatric traits.


Subject(s)
Reinforcement, Psychology , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Brain/physiology , Conditioning, Psychological/physiology , Cues , Decision Making/physiology , Fear/physiology , Impulsive Behavior/physiology , Maze Learning/physiology , Memory/physiology , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Neuropsychological Tests , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Space Perception/physiology , Time Factors
2.
Biol Psychiatry ; 75(11): 901-8, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24120093

ABSTRACT

BACKGROUND: Gene association studies detect an influence of natural variation in the 5-hydroxytryptamine transporter (5-HTT) gene on multiple aspects of individuality in brain function, ranging from personality traits through to susceptibility to psychiatric disorders such as anxiety and depression. The neural substrates of these associations are unknown. Human neuroimaging studies suggest modulation of the amygdala by 5-HTT variation, but this hypothesis is controversial and unresolved, and difficult to investigate further in humans. METHODS: We used a mouse model in which the 5-HTT is overexpressed throughout the brain and recorded hemodynamic responses (using a novel in vivo voltammetric monitoring method, analogous to blood oxygen level-dependent functional magnetic resonance imaging) and local field potentials during Pavlovian fear conditioning. RESULTS: Increased 5-HTT expression impaired, but did not prevent, fear learning and significantly reduced amygdala hemodynamic responses to aversive cues. Increased 5-HTT expression was also associated with reduced theta oscillations, which were a feature of aversive cue presentation in controls. Moreover, in control mice, but not those with high 5-HTT expression, there was a strong correlation between theta power and the amplitude of the hemodynamic response. CONCLUSIONS: Direct experimental manipulation of 5-HTT expression levels throughout the brain markedly altered fear learning, amygdala hemodynamic responses, and neuronal oscillations.


Subject(s)
Amygdala/physiology , Fear/physiology , Neurons/physiology , Oxygen/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Theta Rhythm/physiology , Amygdala/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism
3.
J Neurosci ; 31(14): 5483-94, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21471385

ABSTRACT

The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system.


Subject(s)
Behavior, Animal/physiology , Cytoplasmic Dyneins/genetics , Gene Expression Regulation, Developmental/genetics , Phenotype , Point Mutation/genetics , Animals , Animals, Newborn , Asparagine/genetics , Cell Count/methods , Cells, Cultured , Cerebral Cortex/cytology , Dendrites/genetics , Embryo, Mammalian , Female , Fibroblasts/physiology , Fibroblasts/ultrastructure , Ganglia, Spinal/cytology , Green Fluorescent Proteins/genetics , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Nerve Tissue Proteins , Neural Conduction/genetics , Neurons/classification , Neurons/cytology , Neurons/physiology , Protein Transport/drug effects , Protein Transport/genetics , Psychomotor Performance , Statistics, Nonparametric , Tyrosine/genetics , Weight Lifting/physiology
4.
Eur Neuropsychopharmacol ; 21(1): 108-16, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20863670

ABSTRACT

Human gene association studies have produced conflicting findings regarding the relationship between the 5-HT transporter (5-HTT) and anxiety. In the present study genetically modified mice were utilised to examine the effects of changes in 5-HTT expression on anxiety. In addition, the influence of 5-HTT expression on two innate "species-typical" behaviours (burrowing and marble burying) and body weight was explored. Across a range of models, 5-HTT overexpressing mice displayed reduced anxiety-like behaviour whilst 5-HTT knockout mice showed increased anxiety-like behaviour, compared to wildtype controls. In tests of species-typical behaviour 5-HTT overexpressing mice showed some facilitation whilst 5-HTT knockout mice were impaired. Reciprocal effects were also seen on body weight, as 5-HTT overexpressors were lighter and 5-HTT knockouts were heavier than wildtype controls. These findings show that variation in 5-HTT gene expression produces robust changes in anxiety and species-typical behaviour. Furthermore, the data add further support to findings that variation of 5-HTT expression in the human population is linked to changes in anxiety-related personality traits.


Subject(s)
Anxiety Disorders/genetics , Anxiety/genetics , Behavior, Animal , Serotonin Plasma Membrane Transport Proteins/genetics , Animals , Anxiety/metabolism , Anxiety Disorders/metabolism , Body Weight , Female , Humans , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...