Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Theor Biol ; 542: 111093, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35307407

ABSTRACT

A realistic rat brain model was used to simulate current density and electric field distributions under frequencies characteristic of sleeping states (0.8, 5, and 12 Hz). Two anode-electrode setups were simulated: plate vs. screws-anode, both with a cephalic cathode. Our simulations showed that these frequencies have limited impact on electric field and current density; however, the highest frequency evidenced higher values for both variables. The type of electrode setup had a greater effect on current distribution and induced fields. In that sense, the screws setup resulted in higher values of the modeled variables. The numeric results obtained are within the range of available data for rodent models using the finite elements method. These modeled effects should be analyzed regarding anatomical consequences (depth of penetration of the currents) and purpose of the experiment (i.e., entrainment of brain oscillations) in the context of sleep research.


Subject(s)
Brain , Sleep , Animals , Brain/physiology , Computer Simulation , Electric Stimulation , Finite Element Analysis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL