Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34640822

ABSTRACT

In this paper, a Multi-Objective Genetic Algorithm (MOGA) framework for the design of Artificial Neural Network (ANN) models is used to design 1-step-ahead prediction models of river water levels. The design procedure is a near-automatic method that, given the data at hand, can partition it into datasets and is able to determine a near-optimal model with the right topology and inputs, offering a good performance on unseen data, i.e., data not used for model design. An example using more than 11 years of water level data (593,178 samples) of the Carrión river collected at Villoldo gauge station shows that the MOGA framework can obtain low-complex models with excellent performance on unseen data, achieving an RMSE of 2.5 × 10-3, which compares favorably with results obtained by alternative design.


Subject(s)
Neural Networks, Computer , Rivers , Water , Water Quality
2.
Sensors (Basel) ; 20(21)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171771

ABSTRACT

Hydrometeorological data sets are usually incomplete due to different reasons (malfunctioning sensors, collected data storage problems, etc.). Missing data do not only affect the resulting decision-making process, but also the choice of a particular analysis method. Given the increase of extreme events due to climate change, it is necessary to improve the management of water resources. Due to the solution of this problem requires the development of accurate estimations and its application in real time, this work present two contributions. Firstly, different gap-filling techniques have been evaluated in order to select the most adequate one for river stage series: (i) cubic splines (CS), (ii) radial basis function (RBF) and (iii) multilayer perceptron (MLP) suitable for small processors like Arduino or Raspberry Pi. The results obtained confirmed that splines and monolayer perceptrons had the best performances. Secondly, a pre-validating Internet of Things (IoT) device was developed using a dynamic seed non-linear autoregressive neural network (NARNN). This automatic pre-validation in real time was tested satisfactorily, sending the data to the catchment basin process center (CPC) by using remote communication based on 4G technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...