Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1206561, 2023.
Article in English | MEDLINE | ID: mdl-37601686

ABSTRACT

During their quest for growth, adaptation, and survival, cancer cells create a favorable environment through the manipulation of normal cellular mechanisms. They increase anabolic processes, including protein synthesis, to facilitate uncontrolled proliferation and deplete the tumor microenvironment of resources. As a dynamic adaptation to the self-imposed oncogenic stress, cancer cells promptly hijack translational control to alter gene expression. Rewiring the cellular proteome shifts the phenotypic balance between growth and adaptation to promote therapeutic resistance and cancer cell survival. The integrated stress response (ISR) is a key translational program activated by oncogenic stress that is utilized to fine-tune protein synthesis and adjust to environmental barriers. Here, we focus on the role of ISR signaling for driving cancer progression. We highlight mechanisms of regulation for distinct mRNA translation downstream of the ISR, expand on oncogenic signaling utilizing the ISR in response to environmental stresses, and pinpoint the impact this has for cancer cell plasticity during resistance to therapy. There is an ongoing need for innovative drug targets in cancer treatment, and modulating ISR activity may provide a unique avenue for clinical benefit.

2.
Phytopathology ; 113(10): 1959-1966, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37246966

ABSTRACT

Phytophthora capsici is one of the most devastating pathogens facing pepper (Capsicum annuum) producers worldwide. Numerous factors, such as the race of the pathogen, the growing environment, and the source of resistance, have resulted in an overall lack of widely applicable molecular markers associated with resistance. Our objective was to determine the effect of the rating system on quantitative trait locus (QTL) detection and understand inheritance patterns of host resistance that can influence selection and molecular marker accuracy. We evaluated an F2:11 recombinant inbred line population screened against the highly virulent strain (Pc134) and scored using two widely used methods, developed by Bosland and Lindsey and by Black. The rating system developed by Bosland and Lindsey resulted in slightly higher logarithm of odds for the QTL on chromosome 5, and we detected a QTL on chromosome 12 uniquely using this rating system. A QTL on chromosome 10 was detected using both rating systems, but Black resulted in considerably higher logarithm of odds for this QTL compared with the Bosland and Lindsey system. Molecular markers developed were nominally better at accurately predicting the phenotype than previously published molecular markers but did not completely explain resistance in our validation populations. The inheritance pattern of resistance in one of our F2 populations did not significantly deviate from a 7:9 segregation ratio, indicating duplicative recessive epistasis. However, these results could be confounded by the presence of incomplete gene action, which was found through the improved selection accuracy when the phenotypes of heterozygous individuals were grouped with those with susceptible alleles.


Subject(s)
Capsicum , Phytophthora , Humans , Quantitative Trait Loci/genetics , Capsicum/genetics , Epistasis, Genetic , Phytophthora/genetics , Plant Diseases/genetics , Disease Resistance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...