Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 918: 170647, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38325453

ABSTRACT

This discussion article builds upon existing data to ask whether environmental remediation and treatment is an economically viable solution to manage global environmental stocks of per- and polyfluoroalkyl substances (PFAS) without extensive use restrictions. Their environmental persistence means that PFAS released into the environment will remain there until actively removed and destroyed. Thus, removing and destroying PFAS from the global environment at the same rate they are currently being added reflects a theoretical steady-state condition where global PFAS stocks remain constant. Current costs to remove perfluoroalkyl acids (PFAAs), a subclass of PFAS, from the environment at the same rate they are being added were estimated here at 20 to 7000 trillion USD per year. If the ratio of total PFAS emissions to PFAAs emissions matches current production ratios, total PFAS release rates and associated treatment costs could be 10 to 10,000 higher than presented above for PFAAs only. Thus, current costs to remove and destroy the total PFAS mass released annually into the environment would likely exceed the global GDP of 106 trillion USD. While this level of treatment is not technically or economically achievable, it highlights the unaffordability of using environmental remediation alone to manage environmental PFAS stocks. Without significant reductions in production and emissions, the mass of PFAS present in the global environment will continue to rise. Treating targeted environmental media will be needed to manage human and environmental health impacts, but we are limited to the level of treatment that is practical and affordable.

2.
Water Environ Res ; 96(1): e10975, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38254296

ABSTRACT

Several jurisdictions are currently evaluating regulatory standards for perfluoroalkyl and polyfluoroalkyl substances (PFAS) in municipal water resource recovery facility (WRRF) effluent. Effective and responsible implementation of PFAS effluent limits should consider the costs and capabilities of currently available technologies, because the costs of meeting WRRF PFAS limits could disproportionally fall to ratepayers. Cost curves were developed for currently available PFAS separation and destruction options, assuming effluent treatment targets near current analytical detection limits. Removing and destroying PFAS from municipal WRRF effluent is estimated to increase costs per household by a factor of between 2 and 210, using Minnesota-specific data as an example. Estimated costs per household would increase more for residents of smaller communities, averaging 33% of median household income (MHHI) in communities smaller than 1000 people. This exceeds the U.S. Environmental Protection Agency (EPA)-developed affordability index of 2% of MHHI by a factor of 16. Estimated costs per household to remove and destroy PFAS varied among locations, primarily based on WRRF and community size, median income, rural versus urban, and type of wastewater treatment processes currently used. PRACTITIONER POINTS: Required tertiary treatment before WRRF effluent PFAS separation, using currently available technologies, is a significant portion (~40-80%) of estimated costs. Adding PFAS separation, destruction, and pre-treatment would make Minnesota wastewater rates unaffordable (defined by EPA affordability guidance) without external funding. The estimated cost per household is higher for smaller communities and would require substantial external funding to maintain rate affordability. Design and operating uncertainties remain for full-scale WRRF retrofits to consistently remove and destroy effluent PFAS with limited full-scale applications.


Subject(s)
Fluorocarbons , Wastewater , Humans , United States , Uncertainty , Water Resources
3.
J Microbiol Methods ; 131: 42-44, 2016 12.
Article in English | MEDLINE | ID: mdl-27697461

ABSTRACT

A new generation of laminates and cementitious materials incorporate antimicrobial metals into domestic infrastructure. Conventional culturing approaches are unsuitable for assessing the inhibitory properties of these materials. Modifications to the radial Kirby-Bauer antibiotic assay, which incorporate metal impregnated activated carbon in linear formats, reveal relative metal sensitivities of destructive acidophiles.


Subject(s)
Metals, Heavy/pharmacology , Sulfur-Reducing Bacteria/drug effects , Sulfur-Reducing Bacteria/growth & development , Sulfur/metabolism , Anti-Infective Agents/pharmacology , Carbon/metabolism , Cell Count , Hydrogen-Ion Concentration , Immobilization/methods , Metals, Heavy/metabolism , Oxidation-Reduction , Sulfur/chemistry , Sulfur-Reducing Bacteria/metabolism
4.
PLoS One ; 10(3): e0116400, 2015.
Article in English | MEDLINE | ID: mdl-25748024

ABSTRACT

Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.


Subject(s)
Bacteria/isolation & purification , Construction Materials , Corrosion , Sanitary Engineering , Bacteria/genetics , Hydrogen-Ion Concentration , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics
5.
Environ Sci Technol ; 48(13): 7357-64, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24842376

ABSTRACT

The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (<10 taxa). Bacterial community composition was not correlated to geographic location when considered independently from other environmental factors. Corrosion was most severe in sites with high levels of hydrogen sulfide (>100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus.


Subject(s)
Bacteria/growth & development , Biodiversity , Carbon Dioxide/analysis , Construction Materials , Hydrogen Sulfide/analysis , Biofilms , Corrosion , Geography , Hydrogen-Ion Concentration , Linear Models , Methane/analysis , Porosity
6.
Environ Sci Technol ; 47(9): 4046-52, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23517146

ABSTRACT

Genes encoding tetracycline resistance and the integrase of Class 1 integrons were enumerated using quantitative PCR from aerosols collected from indoor and outdoor environments. Concentrated animal feeding operations (CAFOs) and human-occupied indoor environments (two clinics and a homeless shelter) were found to be a source of airborne tet(X) and tet(W) genes. The CAFOs had 10- to 100-times higher concentrations of airborne 16S rRNA, tet(X), and tet(W) genes than other environments sampled, and increased concentrations of aerosolized bacteria correlated with increased concentrations of airborne resistance genes. The two CAFOs studied had statistically similar concentrations of resistance genes in their aerosol samples, even though antibiotic use was markedly different between the two operations. Additionally, tet(W) genes were recovered in outdoor air within 2 km of livestock operations, which suggests that antibiotic resistance genes may be transported via aerosols on local scales. The integrase gene (intI1) from Class 1 integrons, which has been associated with multidrug resistance, was detected in CAFOs but not in human-occupied indoor environments, suggesting that CAFO aerosols could serve as a reservoir of multidrug resistance. In conclusion, our results show that CAFOs and clinics are sources of aerosolized antibiotic resistance genes that can potentially be transported via air movement.


Subject(s)
Aerosols , Air Microbiology , Integrons/genetics , Tetracycline Resistance/genetics , Animals , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...