Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(8): 5546-5554, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38593403

ABSTRACT

Mechanistic investigation of the gold-catalyzed oxidative reactions of thioalkynes with quinoline N-oxides was performed using density functional theory (DFT) calculations. For the oxidative rearrangement of thioalkynes with quinoline N-oxide to yield the same products, the Cß-oxidation of thioalkynes was predicted to be competitive with Cα-oxidation, with the Cß-oxidative process slightly more favorable. However, for the oxidative alkenylation of propargyl aryl thioethers with quinoline N-oxides, the Cß-oxidation of thioether by quinoline N-oxide generated the product 3-hydroxy-1-alkylidene phenylthiopropan-2-one. Moreover, the ring opening of the four-membered sulfonium intermediate was achieved by the nucleophilic attack of quinoline N-oxide rather than a water molecule.

2.
J Org Chem ; 88(7): 4494-4503, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-36972416

ABSTRACT

The mechanism of the rhodium-catalyzed C-H alkenylation/directing group migration and [3+2] annulation of N-aminocarbonylindoles with 1,3-diynes has been investigated with DFT calculations. On the basis of mechanistic studies, we mainly focus on the regioselectivity of 1,3-diyne inserting into the Rh-C bond and the N-aminocarbonyl directing group migration involved in the reactions. Our theoretical study uncovers that the directing group migration undergoes a stepwise ß-N elimination and isocyanate reinsertion process. As studied in this work, this finding is also applicable to other relevant reactions. Additionally, the role of Na+ versus Cs+ involved in the [3+2] cyclization reaction is also probed.

3.
J Org Chem ; 87(19): 13102-13110, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36103134

ABSTRACT

A mechanistic investigation of α-alkynylation and α-allenylation of aldehydes under the synergistic catalysis of AuCl/amine was performed using density functional theory (DFT) calculations. For such a reaction that delivers two products, this study reveals that the reaction undergoes such a mechanistic mode: reactants → alkynyl product → allenyl product, implying that the allenyl product cannot be obtained directly from reactants. The product ratio obtained experimentally was rationalized based on the computed results that both products can reversibly interconvert with AuCl as the catalyst and with N-containing Lewis bases as additives such as 4,5-diazafluorenone. For the relative stability of alkynyl versus allenyl compounds, unsaturated substituents are found to favor the allenyl compounds.

4.
RSC Adv ; 11(13): 7732-7737, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-35423232

ABSTRACT

Fluorescent molecularly imprinted polymers (FMIPs) are gaining increasing attention in analytical and medical sciences, particularly silica-based FMIPs due to their low cost, environmentally friendly nature and good biocompatibility. However, at present, silica-based FMIPs are usually prepared through several steps and displayed low selectivity. Here, a simple approach was utilized for preparing silica-based FMIP nanoparticles. The polymerization was initiated by 3-aminopropyltriethoxysilane (APTES), which also acted as the functional monomer in the imprinting system; in addition, to achieve one-pot synthesis, a fluorescent monomer was prepared by a simple reaction between fluorescein isothiocyanate (FITC) and APTES. The as-synthesized FMIP nanoparticles displayed high specificity and fast response time (<1 min) towards the target molecule. Environmental pH and buffer salt could affect the specific recognition behaviors of the FMIP nanoparticles. Such a simple catalyst-free synthetic technique could also be employed for the preparation of FMIP nanoparticles targeting other acidic molecules.

5.
ACS Omega ; 5(25): 15446-15453, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32637819

ABSTRACT

Iridium-catalyzed oxidative o-alkenylation of benzylamines with acrylates was enabled by the directing group pentafluorobenzoyl (PFB). Density functional theory calculations were performed to explore the detailed reaction mechanism. The calculated results reveal that N-deprotonation prior to C-H activation is favored over direct C-H activation. Moreover, C-H activation is reversible and not the rate-determining step, which has been supported by the experimental observation. The regio- and stereoselectivity of ethyl acrylate insertion are controlled by the steric effect and the carbon atom with a larger orbital coefficient of the π* antibonding orbital in the nucleophilic attack, respectively. The migratory insertion of ethyl acrylate is computationally found to be rate-determining for the whole catalytic cycle. Finally, the seven-membered ring intermediate IM11 undergoes a sequential N-protonation and ß-H elimination with the assistance of AcOH, rather than ß-H elimination and reductive elimination proposed experimentally, to afford the o-alkenylated product. IM11 is unable to directly cyclize through C-N reductive elimination because both sp3-hybridized N and C atoms are unfavorable for N-C reductive elimination. The origin of the directing group PFB preventing the product and intermediates undergoing aza-Michael addition has been explained.

6.
RSC Adv ; 10(34): 20368-20373, 2020 May 26.
Article in English | MEDLINE | ID: mdl-35520410

ABSTRACT

3-Aminopropyltriethoxysilane (APTES) is a silane widely used to supply amino groups for further modifications on various materials, but it is less studied as a catalyst to catalyze sol-gel silica polymerization. Here, by using APTES as the catalyst instead of the conventional basic catalysts, a novel strategy was developed to prepare silica-based molecularly imprinted polymers (MIPs). Meanwhile, APTES was employed as the functional monomer to create imprinted nanocavities for specific recognition of target molecules. The as-synthesized MIP exhibited ultra-high recognition capability due to the elimination of the detrimental effect on the imprinting performance caused by the additional catalysts. The preparation process, specificity, pH effect, binding capacity and affinity of the MIP were studied in detail. The MIP microparticles could be packed into a solid phase extraction column for removing the target molecule in water efficiently, and the molecule could easily be enriched by 40 times. The interaction of the functional monomer and template was studied by the calculation method, giving a more clear understanding of the recognition behaviours of the imprinted polymers. The strategy could be extended not only to prepare highly specific MIPs for other small phosphoric molecules, but also for biomolecules e.g. phosphorylated peptides or proteins.

7.
Phys Chem Chem Phys ; 21(19): 10105-10113, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31062768

ABSTRACT

Enoyl thioester reductase from Candida tropicalis (Etr1p) catalyzes the NADPH-dependent conversion of enoyl thioesters into acyl thioesters, which are essential in fatty acid and second metabolite biosynthesis. In this paper, we explored the detailed catalytic mechanism of Etr1p by performing QM/MM calculations. Here, we focused on the formation of the covalent ene adduct intermediate and the proton transfer from Tyr79 to the substrate. Our calculation results reveal that the formation of the stable covalent ene adduct follows the Michael addition mechanism rather than the electrocyclic ene reaction. In addition, the ene adduct intermediate can reversibly decompose into the carbanion, and the proton of Tyr79 undertakes a direct electrophilic attack on the substrate to yield the product. In addition, three crystal water molecules do not participate in the catalytic reaction, but they play a crucial role in the hydride transfer and the proton transfer processes by forming a hydrogen bond network. These findings presented here would benefit our understanding of the catalytic mechanism of the NADPH-dependent enzyme.


Subject(s)
Candida tropicalis/enzymology , Esters/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Sulfur Compounds/metabolism , Biocatalysis , Esters/chemistry , Molecular Dynamics Simulation , Molecular Structure , Quantum Theory , Sulfur Compounds/chemistry
8.
Phys Chem Chem Phys ; 20(25): 17342-17352, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29904766

ABSTRACT

Linalool dehydratase/isomerase (LinD) from Castellaniella defragrans is a bifunctional enzyme that catalyzes the hydration of ß-myrcene to (S)-linalool and the isomerization of (S)-linalool to geraniol. In this paper, on the basis of recently obtained crystal structures, the catalytic mechanism of LinD has been explored by a combined quantum mechanics and molecular mechanics (QM/MM) approach. Two computational models have been constructed. Model I (LinD-linalool) was derived from the crystal structure of the selenomethionine derivative of LinD (Semet-LinD) in complex with the natural substrate geraniol, whereas model II (LinD-ß-myrcene) was constructed from the crystal structure of LinD in complex with ß-myrcene. In addition to a minor conformational difference of the active sites, the two models also differ in the protonation state of key residues. In model I, the pocket residue Asp39' was set to be deprotonated and His129 was protonated on ND1, whereas in model II, Asp38' was set to be deprotonated and His128 was protonated on NE2. Our calculations reveal model II as the active one, which implies that hydration and dehydration are sensitive to the protonation state and fine structure of the active site. On the basis of model II, the conversion details from ß-myrcene to geraniol can be obtained. Firstly, ß-myrcene is hydrated by a crystal water (W14) and is converted into the stable intermediate (S)-linalool, then linalool is isomerized to geraniol with an overall energy barrier of 24.6 kcal mol-1. Besides, linalool can also reversibly convert into the reactant with an energy barrier of 24.1 kcal mol-1. It is also found that the intermediate IM1 can directly transform to geraniol without first converting to (S)-linalool. His128 and Tyr65 form hydrogen bonds to stabilize the structure of the active site, but they do not act as general acid/base catalysts during the catalytic reactions.


Subject(s)
Alcaligenaceae/chemistry , Hydro-Lyases/chemistry , Isomerases/chemistry , Monoterpenes/chemistry , Acyclic Monoterpenes , Amino Acids/chemistry , Catalysis , Catalytic Domain , Hydrogen Bonding , Hydrogenation , Isomerism , Terpenes/chemistry , Thermodynamics
9.
J Org Chem ; 83(4): 2067-2076, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29376365

ABSTRACT

Density functional theory (DFT) calculations have been performed to study the Pd-catalyzed C-H functionalization of (E)-N-methoxy cinnamamide (E1), which selectively provides the α-C-H activation products (EP as minor product and its C═C rotation isomer ZP' as major product). Three crucial issues are solved: (i) The detailed mechanism leading to ZP' is one issue. The computational analyses of the mechanisms proposed in previously experimental and theoretical literature do not seem to be consistent with the experimental findings due to the high barriers involved. Alternatively, we present a novel oxidation/reduction-promoted mechanism featuring the Pd(0) → Pd(II) → Pd(0) transformation. The newly proposed mechanism involves the initial coordination of the active catalyst PdL2 (L = t-BuCN) with the C═C bond in EP, followed by the oxidative cyclization/reductive decyclization-assisted C═C double-bond rotation processes resulting in ZP' and regeneration of PdL2. (ii) The origin of the product E/Z selectivity is the second issue. On the basis of the calculated results, it is found that, at the initial stage of the reaction, EP is certainly completely generated, while no ZP' formation occurred. Once E1 is used up, EP immediately acts as the partner of the new catalytic cycle and sluggishly evolves into ZP'. A small amount of generated ZP' would reversibly transform to EP due to the higher barrier involved. (iii) The intrinsic reasons for the regioselectivity are the third issue. The calculated results indicate that the regioselectivity for α-C-H activation is mainly attributed to the stronger electrostatic attraction between the α-C and the metal center.

10.
Proteins ; 85(8): 1518-1528, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28486790

ABSTRACT

Porphyromonas gingivalis peptidylarginine deiminase (PPAD) catalyzes the citrullination of peptidylarginine, which plays a critical role in the rheumatoid arthritis (RA) and gene regulation. For a better understanding of citrullination mechanism of PPAD, it is required to establish the protonation states of active site cysteine, which is still a controversial issue for the members of guanidino-group-modifying enzyme superfamily. In this work, we first explored the transformation between the two states: State N (both C351 and H236 are neutral) and State I (both residues exist as a thiolate-imidazolium ion pair), and then investigated the citrullination reaction of peptidylarginine, using a combined QM/MM approach. State N is calculated to be more stable than State I by 8.46 kcal/mol, and State N can transform to State I via two steps of substrate-assisted proton transfer. Citrullination of the peptidylarginine contains deamination and hydrolysis. Starting from State N, the deamination reaction corresponds to an energy barrier of 18.82 kcal/mol. The deprotonated C351 initiates the nucleophilic attack to the substrate, which is the key step for deamination reaction. The hydrolysis reaction contains two chemical steps. Both the deprotonated D238 and H236 can act as the bases to activate the hydrolytic water, which correspond to similar energy barriers (∼17 kcal/mol). On the basis of our calculations, C351, D238, and H236 constitute a catalytic triad, and their protonation states are critical for both the deamination and hydrolysis processes. In view of the sequence similarity, these findings may be shared with human PAD1-PAD4 and other guanidino-group-modifying enzymes. Proteins 2017; 85:1518-1528. © 2017 Wiley Periodicals, Inc.


Subject(s)
Arginine/chemistry , Bacterial Proteins/chemistry , Citrulline/chemistry , Cysteine/chemistry , Hydrolases/chemistry , Porphyromonas gingivalis/chemistry , Protons , Amino Acid Motifs , Arginine/analogs & derivatives , Aspartic Acid/chemistry , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Histidine/chemistry , Hydrolases/metabolism , Hydrolysis , Molecular Dynamics Simulation , Porphyromonas gingivalis/enzymology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein-Arginine Deiminases , Quantum Theory , Substrate Specificity , Thermodynamics
11.
J Mol Graph Model ; 73: 191-199, 2017 05.
Article in English | MEDLINE | ID: mdl-28301812

ABSTRACT

In this paper, the dephosphorylation mechanism of FBP to F6P catalyzed by the Fructose-1, 6-bisphosphatase (St-Fbp) from Sulfolobus tokodaii was studied using quantum mechanical/molecular mechanical (QM/MM) approach. Based on the experimental results, total five possible catalytic mechanisms (path1-path4') were designed. The most possible dephosphorylation reaction follows a two-step mechanism (path2): a dephosphorylation process (with D12 being an base of W6 and residue K133 being the proton donor of the linking FBP:O4) and a proton exchange process (between K133 and the water W1). Furthermore, the three-step of path4 is also possible: a dephosphorylation process (with D54 being the base of W6 and residue K133 being the proton donor of the linking FBP:O4) and two proton exchange processes (first between residues D54 and D12 then between K133 and the water W1). The relative low energy of this pathway suggests that D54 might also be a base except D12. Our calculations indicate that K133 is the preferred proton donor during the breaking of the phosphate bond O4-P1, with the W1 being an alternative proton donor to access to a more stable product. Findings here give a new insight into the understanding of catalytic mechanism of FBPase.


Subject(s)
Biocatalysis , Fructose-Bisphosphatase/metabolism , Metals/metabolism , Oxygen/metabolism , Protons , Sulfolobus/enzymology , Binding Sites , Crystallography, X-Ray , Fructose-Bisphosphatase/chemistry , Ions , Models, Molecular , Phosphorylation , Quantum Theory , Thermodynamics
12.
J Org Chem ; 81(19): 9381-9388, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27603920

ABSTRACT

Gold-catalyzed cyclization of 2-alkynyl-N-propargylanilines provides a step-economic method for the construction of three-dimensional indolines. In this article, the M06 functional of density functional theory was employed to gain deeper insights into the reaction mechanism and the associated intriguing experimental observations. The reaction was found to first undergo Au(I)-induced cyclization to form an indole intermediate, 1,3-propargyl migration, and substitution with the substrate 2-alkynyl-N-propargylaniline (R1) to generate the intermediate product P1, an allene species. Subsequently, Au(I)-catalyzed conversion of P1 into the final product P2, an indoline compound, occurs first through direct cyclization rather than via the previously proposed four-membered carbocycle intermediate. Thereafter, water-assisted oxygen heterocycle formation and proton transfer generate the final product. The calculated activation free energies indicate that P1 formation is 5.9 times slower than P2 formation, in accordance with the fact that P1 formation is rate-limiting. Futhermore, the intriguing experimental phenomenon that P2 can be accessed only after almost all the substrate R1 converts to P1 although P1 formation is rate-limiting was rationalized by employing an energetic span model. We found the initial facile cyclization to form a highly stable indole intermediate in the formation of P1 is the key to the intriguing experimental phenomenon.

13.
Proteins ; 84(6): 792-802, 2016 06.
Article in English | MEDLINE | ID: mdl-26948533

ABSTRACT

Malonyl-CoA decarboxylase (MCD) can control the level of malonyl-CoA in cell through the decarboxylation of malonyl-CoA to acetyl-CoA, and plays an essential role in regulating fatty acid metabolism, thus it is a potential target for drug discovery. However, the interactions of MCD with CoA derivatives are not well understood owing to unavailable crystal structure with a complete occupancy in the active site. To identify the active site of MCD, molecular docking and molecular dynamics simulations were performed to explore the interactions of human mitochondrial MCD (HmMCD) and CoA derivatives. The findings reveal that the active site of HmMCD indeed resides in the prominent groove which resembles that of CurA. However, the binding modes are slightly different from the one observed in CurA due to the occupancy of the side chain of Lys183 from the N-terminal helical domain instead of the adenine ring of CoA. The residues 300 - 305 play an essential role in maintaining the stability of complex mainly through hydrogen bond interactions with the pyrophosphate moiety of acetyl-CoA. Principle component analysis elucidates the conformational distribution and dominant concerted motions of HmMCD. MM_PBSA calculations present the crucial residues and the major driving force responsible for the binding of acetyl-CoA. These results provide useful information for understanding the interactions of HmMCD with CoA derivatives. Proteins 2016; 84:792-802. © 2016 Wiley Periodicals, Inc.


Subject(s)
Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Mitochondria/enzymology , Acetyl Coenzyme A/metabolism , Catalytic Domain , Cyclopropanes/metabolism , Humans , Malonyl Coenzyme A/metabolism , Mitochondria/chemistry , Mitochondria/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Thermodynamics , Thiazoles/metabolism
14.
Comput Biol Chem ; 60: 21-31, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26629747

ABSTRACT

Glucokinase (GK) plays a critical role in maintaining glucose homeostasis in the human liver and pancreas. In the liver, the activity of GK is modulated by the glucokinase regulatory protein (GKRP) which functions as a competitive inhibitor of glucose to bind to GK. Moreover, the inhibitory intensity of GKRP-GK is suppressed by fructose 1-phosphate (F1P), and reinforced by fructose 6-phosphate (F6P). Here, we employed a series of computational techniques to explore the interactions of fructose phosphates with GKRP. Calculation results reveal that F1P and F6P can bind to the same active site of GKRP with different binding modes, and electrostatic interaction provides a major driving force for the ligand binding. The presence of fructose phosphate severely influences the motions of protein and the conformational space, and the structural change of sugar phosphate influences its interactions with GKRP, leading to a large conformational rearrangement of loop2 in the SIS2 domain. In particular, the binding of F6P to GKRP facilitates the protruding loop2 contacting with GK to form the stable GK-GKRP complex. The conserved residues 179-184 of GKRP play a major role in the binding of phosphate group and maintaining the stability of GKRP. These results may provide deep insight into the regulatory mechanism of GKRP to the activity of GK.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Fructosephosphates/chemistry , Catalytic Domain , Humans , Lysine/chemistry , Models, Chemical , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Domains , Serine/chemistry , Threonine/chemistry
15.
Biochemistry ; 54(33): 5225-34, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26256234

ABSTRACT

Deubiquitinating enzymes (DUBs) catalyze the cleavage of the isopeptide bond in polyubiquitin chains to control and regulate the deubiquitination process in all known eukaryotic cells. The human AMSH-LP DUB domain specifically cleaves the isopeptide bonds in the Lys63-linked polyubiquitin chains. In this article, the catalytic mechanism of AMSH-LP has been studied using a combined quantum mechanics and molecular mechanics method. Two possible hydrolysis processes (Path 1 and Path 2) have been considered. Our calculation results reveal that the activation of Zn(2+)-coordinated water molecule is the essential step for the hydrolysis of isopeptide bond. In Path 1, the generated hydroxyl first attacks the carbonyl group of Gly76, and then the amino group of Lys63 is protonated, which is calculated to be the rate limiting step with an energy barrier of 13.1 kcal/mol. The energy barrier of the rate limiting step and the structures of intermediate and product are in agreement with the experimental results. In Path 2, the protonation of amino group of Lys63 is prior to the nucleophilic attack of activated hydroxyl. The two proton transfer processes in Path 2 correspond to comparable overall barriers (33.4 and 36.1 kcal/mol), which are very high for an enzymatic reaction. Thus, Path 2 can be ruled out. During the reaction, Glu292 acts as a proton transfer mediator, and Ser357 mainly plays a role in stabilizing the negative charge of Gly76. Besides acting as a Lewis acid, Zn(2+) also influences the reaction by coordinating to the reaction substrates (W1 and Gly76).


Subject(s)
Biocatalysis , Catalytic Domain , Models, Molecular , Quantum Theory , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism , Humans , Hydrolysis , Peptide Hydrolases , Static Electricity , Zinc/metabolism
16.
J Mol Graph Model ; 61: 21-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26188792

ABSTRACT

2-Pyrone-4,6-dicarboxylate lactonase (LigI) is the first identified enzyme from amidohydrolase superfamily that does not require a divalent metal ion for catalytic activity. It catalyzes the reversible hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) to 4-oxalomesaconate (OMA) and 4-carboxy-2-hydroxymuconate (CHM) in the degradation of lignin. In this paper, a combined quantum mechanics and molecule mechanics (QM/MM) approach was employed to study the reaction mechanism of LigI from Sphingomonas paucimobilis. According to the results of our calculations, the whole catalytic reaction contains three elementary steps, including the nucleophilic attack, the cleavage of CO of lactone (substrate) and the intramolecular proton transfer. The intermediate has two intramolecular proton transfer pathways, due to which, two final hydrolysis products can be obtained. The energy profile indicates that 4-carboxy-2-hydroxymuconate (CHM) is the main hydrolysis product, therefore, the isomerization between 4-carboxy-2-hydroxymuconate (CHM) and 4-oxalomesaconate (OMA) is suggested to occur in solvent. During the catalytic reaction, residue Asp248 acts as a general base to activate the hydrolytic water molecule. Although His31, His33 and His180 do not directly participate in the chemical process, they play assistant roles by forming electrostatic interactions with the substrate and its involved species in activating the carbonyl group of the substrate and stabilizing the intermediates and transition states.


Subject(s)
Bacterial Proteins/chemistry , Carboxylic Ester Hydrolases/chemistry , Lignin/chemistry , Pyrones/chemistry , Amino Acid Motifs , Biocatalysis , Hydrolysis , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Quantum Theory , Sphingomonas/chemistry , Sphingomonas/enzymology , Substrate Specificity
17.
J Mol Graph Model ; 50: 61-70, 2014 May.
Article in English | MEDLINE | ID: mdl-24763245

ABSTRACT

L-Alanine dehydrogenase from Mycobacterium tuberculosis (L-MtAlaDH) catalyzes the NADH-dependent interconversion of l-alanine and pyruvate, and it is considered to be a potential target for the treatment of tuberculosis. The experiment has verified that amino acid replacement of the conserved active-site residues which have strong stability and no great changes in biological evolutionary process, such as His96 and Asp270, could lead to inactive mutants [Ågren et al., J. Mol. Biol. 377 (2008) 1161-1173]. However, the role of these conserved residues in catalytic reaction still remains unclear. Based on the crystal structures, a series of mutant structures were constructed to investigate the role of the conserved residues in enzymatic reaction by using molecular dynamics simulations. The results show that whatever the conserved residues were mutated, the protein can still convert its conformation from open state to closed state as long as NADH is present in active site. Asp270 maintains the stability of nicotinamide ring and ribose of NADH through hydrogen bond interactions, and His96 is helpful to convert the protein conformation by interactions with Gln271, whereas, they would lead to the structural rearrangement in active site and lose the catalytic activity when they were mutated. Additionally, we deduce that Met301 plays a major role in catalytic reaction due to fixing the nicotinamide ring of NADH to prevent its rotation, and we propose that Met301 would be mutated to the hydrophobic residue with large steric hindrance in side chain to test the activity of the protein in future experiment.


Subject(s)
Alanine Dehydrogenase/chemistry , Molecular Dynamics Simulation , Mycobacterium tuberculosis/enzymology , Alanine Dehydrogenase/metabolism , Hydrogen Bonding , Models, Molecular , Protein Conformation , Thermodynamics
18.
J Mol Graph Model ; 44: 232-40, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23911932

ABSTRACT

The GAF domain located in the N-terminal motifs of CodY (N-CodY) is responsible for increasing the affinity of CodY to its target sites on DNA by its interaction with the branched chain amino acids (BCAAs) involving isoleucine, leucine and valine. The study of the interaction of GAF domain with isoleucine gains much attention in recent years, but the mechanism of isoleucine release still remains unclear. In this paper, a conventional molecular dynamics (MD) and force probe molecular dynamics (FPMD) simulations have been performed with the aim to understand how the isoleucine ligand escapes from the GAF domain of N-CodY from Bacillus subtilis. The MD results reveal that the ligand release is a gradual process, which is accompanied by the movement of the loop between ß3 and ß4. During the periods of ligand escaping from the bottom to the top of binding pocket, isoleucine forms hydrogen bonds one after another with series of residues, such as ARG61, THR96, PHE98, VAL100, GLU101 and ASN102, under the mediation of hydrophobic contacts. The FPMD results show that the easiest way to pull ligand out of the cavity is along x direction (i.e. the direction is opposite to MET62).


Subject(s)
Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Isoleucine/chemistry , Molecular Dynamics Simulation , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Bacterial Proteins/metabolism , Isoleucine/metabolism , Ligands , Molecular Docking Simulation , Protein Binding , Protein Conformation , Transcription Factors/metabolism
19.
Article in English | MEDLINE | ID: mdl-22842132

ABSTRACT

The interaction of luteolin with calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was studied by UV-Vis spectroscopy, fluorescence spectroscopy and viscosity measurement method, respectively. The results indicated that a complex of luteolin with ctDNA can be formed. Spectroscopic techniques together with viscosity determination provided evidences of intercalation mode of binding for the interaction between luteolin and ctDNA. The binding constant of luteolin to DNA calculated based on UV-Vis spectroscopy data was found to be 4.52×10(4)L mol(-1) at 310 K. The thermodynamic parameters of the complex were calculated by a double reciprocal method: Δ(r)H(m)(s)=-8.9×10(3)J mol(-1),Δ(r)S(m)(s)=60.5 JK(-1)mol(-1) and Δ(r)G(m)(s)=-2.76×10(4)J mol(-1) (310 K). The interacting forces between luteolin and DNA mainly included hydrophobic interactions and hydrogen bonds. The acridine orange displacement studies revealed that luteolin had significant effect for acridine orange bounded on DNA, which was indicative of intercalation binding.


Subject(s)
DNA/metabolism , Luteolin/metabolism , Absorption , Acridine Orange/metabolism , Animals , Binding, Competitive , Cattle , Hydrogen-Ion Concentration , Kinetics , Luteolin/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics , Viscosity
20.
J Mol Graph Model ; 35: 1-10, 2012 May.
Article in English | MEDLINE | ID: mdl-22459692

ABSTRACT

Mycobacterium tuberculosis L-alanine dehydrogenase (L-MtAlaDH) catalyzes the NADH-dependent reversible oxidative deamination of L-alanine to pyruvate and ammonia. L-MtAlaDH has been proposed to be a potential target in the treatment of tuberculosis. Based on the crystal structures of this enzyme, molecular dynamics simulations were performed to investigate the conformational changes of L-MtAlaDH induced by coenzyme NADH. The results show that the presence of NADH in the binding domain restricts the motions and conformational distributions of L-MtAlaDH. There are two loops (residues 94-99 and 238-251) playing important roles for the binding of NADH, while another loop (residues 267-293) is responsible for the binding of substrate. The opening/closing and twisting motions of two domains are closely related to the conformational changes of L-MtAlaDH induced by NADH.


Subject(s)
Alanine Dehydrogenase/chemistry , Bacterial Proteins/chemistry , Molecular Dynamics Simulation , Mycobacterium tuberculosis/enzymology , NAD/chemistry , Algorithms , Binding Sites , Enzyme Stability , Hydrogen Bonding , Principal Component Analysis , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...