Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(11): 5098-5106, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494957

ABSTRACT

We have made the compound 2O-BaPtO3 by high-pressure, high-temperature synthesis, determined its structure, and tested its catalytic activity. Compounds of the same stoichiometry have been reported and tentatively identified as hexagonal perovskites, and although no structural model was ever established, 2O-BaPtO3 is clearly different and, to the best of our knowledge, unique. It features continuous chains of face-sharing PtO6 octahedra, like the well-known 2H hexagonal perovskite type, but with a staggered offset between the chains that breaks hexagonal symmetry and disrupts the close-packed array of A = Ba and X = O that is a defining characteristic of ABX3 perovskites. We investigated this structure and its stability vs the conventional 2H form using X-ray and neutron diffraction, X-ray absorption spectroscopy, and ab initio calculations. Catalytic testing of 2O-BaPtO3 showed that it is active for hydrogen evolution.

2.
Inorg Chem ; 62(17): 6786-6793, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37078769

ABSTRACT

Oxygen-deficient perovskite compounds with the general formula Ba3RFe2O7.5 present a good opportunity to study competing magnetic interactions between Fe3+ 3d cations with and without the involvement of unpaired 4f electrons on R3+ cations. From analysis of neutron powder diffraction data, complemented by ab initio density functional theory calculations, we determined the magnetic ground states when R3+ = Y3+ (non-magnetic) and Dy3+ (4f9). They both adopt complex long-range ordered antiferromagnetic structures below TN = 6.6 and 14.5 K, respectively, with the same magnetic space group Ca2/c (BNS #15.91). However, the dominant influence of f-electron magnetism is clear in temperature dependence and differences between the size of the ordered moments on the two crystallographically independent Fe sites, one of which is enhanced by R-O-Fe superexchange in the Dy compound, while the other is frustrated by it. The Dy compound also shows evidence for temperature- and field-dependent transitions with hysteresis, indicating a field-induced ferromagnetic component below TN.

3.
ACS Appl Mater Interfaces ; 15(9): 12261-12272, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36821625

ABSTRACT

We demonstrate a modular synthesis approach to yield mesoporous carbon-coated anatase (denoted as TiO2/C) nanostructures. Combining polymerization-induced self-assembly (PISA) and reversible addition-fragmentation chain-transfer (RAFT) dispersion polymerization enabled the fabrication of uniform core-shell polymeric nanoreactors with tunable morphologies. The nanoreactors comprised of a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) shell and a poly(benzyl methacrylate) (PBzMA) core. We selected worm-like and vesicular morphologies to guide the nanostructuring of a TiO2 precursor, namely, titanium(IV) bis(ammonium lactato)dihydroxide (TALH). Subsequent carbonization yielded nanocrystalline anatase and simultaneously introduced a porous carbon framework, which also suppressed the crystal growth (∼5 nm crystallites). The as-prepared TiO2/C materials comprised of a porous structure, with large specific surface areas (>85 m2/g) and various carbon contents (20-30 wt %). As anode components in lithium-ion batteries, our TiO2/C nanomaterials improved the cycling stability, facilitated high overall capacities, and minimized the capacity loss compared to both their sans carbon and commercial anatase analogues.

4.
Inorg Chem ; 61(17): 6555-6561, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35442670

ABSTRACT

We positively identified and quantified the solid-state phases involved in the carbonation/decarbonation cycle of Na2ZrO3 when used for carbon capture. Previous work had only qualitatively inferred the phases present using diffraction pattern matching and thermogravimetric analysis. Here, we used the Rietveld-refinement method to analyze synchrotron X-ray and neutron powder diffraction data from samples treated ex situ. We then confirmed and extended our findings by in situ diffraction using a purpose-built gas-flow apparatus. This allowed us to resolve discrepancies in the earlier literature concerning which phases are present during the carbonation and regeneration processes. A key finding is the simultaneous presence of the monoclinic and tetragonal phases of ZrO2 and that the "metastable" tetragonal phase is favored by smaller particles and can reincorporate into the bulk but the stable monoclinic phase does not. The result will help optimize the cycling of Na2ZrO3.

5.
Inorg Chem ; 60(20): 15128-15130, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34597035

ABSTRACT

The crystal and magnetic structures and properties of the monoclinic form of the iron hydroxysulfate FeOHSO4 were investigated by magnetometry and neutron powder diffraction. The space group C2/c was confirmed, and the proton position was located close to that predicted by ab initio calculations. The collinear antiferromagnetic k(0,0,0) structure forming below the Néel temperature TN ∼ 125 K is described by the C2'/c' (No. 15.89) magnetic space group, with the moments along the b axis. Overall, FeOHSO4 is isostructural to FeSO4F in terms of both the crystal and magnetic structures.

6.
ACS Omega ; 6(38): 25019-25039, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604682

ABSTRACT

Decoupling the roles of the farnesoid X nuclear receptor and Takeda G-protein-coupled bile acid receptor 5 is essential for the development of novel bile acid therapeutics targeting metabolic and neurodegenerative diseases. Herein, we describe the synthesis of 12ß-methyl-18-nor-bile acids which may serve as probes in the search for new bile acid analogues with clinical applicability. A Nametkin-type rearrangement was applied to protected cholic acid derivatives, giving rise to tetra-substituted Δ13,14- and Δ13,17-unsaturated 12ß-methyl-18-nor-bile acid intermediates (24a and 25a). Subsequent catalytic hydrogenation and deprotection yielded 12ß-methyl-18-nor-chenodeoxycholic acid (27a) and its 17-epi-epimer (28a) as the two major reaction products. Optimization of the synthetic sequence enabled a chromatography-free route to prepare these bile acids at a multi-gram scale. In addition, the first cis-C-D ring-junctured bile acid and a new 14(13 → 12)-abeo-bile acid are described. Furthermore, deuteration experiments were performed to provide mechanistic insights into the formation of the formal anti-hydrogenation product 12ß-methyl-18-nor-chenodeoxycholic acid (27a).

7.
Inorg Chem ; 59(19): 14439-14446, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32954723

ABSTRACT

Na2O2 is one of the possible discharge products from sodium-air batteries. Here, we report the evolution of the structure of Na2O2 from room temperature to 500 °C using variable-temperature neutron and synchrotron X-ray powder diffraction. A phase transition from α-Na2O2 to ß-Na2O2 is observed in the neutron diffraction measurements above 400 °C, and the crystal structure of ß-Na2O2 is determined from neutron diffraction data at 500 °C. α-Na2O2 adapts a hexagonal P62m (no. 189) structure, and ß-Na2O2 adapts a tetragonal I41/acd (no. 142) structure. The thermal expansion coefficients of α-Na2O2 are a = 2.98(1) × 10-5 K-1, c = 2.89(1) × 10-5 K-1, and V = 8.96(1) × 10-5 K-1 up to 400 °C, and a ∼10% volume expansion occurs during the phase transition from α-Na2O2 to ß-Na2O2 due to the realignment/rotation of O22- groups. Both phases are electronic insulators according to DFT calculations with band gaps (both indirect) of 1.75 eV (α-Na2O2) and 2.56 eV (ß-Na2O2). An impedance analysis from room temperature to 400 °C revealed a significant enhancement of the conductivity at T ≥ 275 °C. α-Na2O2 shows a higher conductivity (∼10 times at T ≤ 275 °C and ∼3 times at T > 275 °C) in O2 compared to in Ar. We confirmed, by dielectric analysis, that this enhanced conductivity is dominated by ionic conduction.

8.
Inorg Chem ; 59(17): 12143-12155, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32808781

ABSTRACT

Sodium-ion batteries (NIBs) are an emerging alternative to lithium-ion batteries because of the abundance of sodium resources and their potentially lower cost. Here we report the Na0.7MnO2 solid state synthesized at 1000 °C that shows two distinct phases; one adopts hexagonal P2-type P63/mmc space group symmetry, and the other adopts orthorhombic Pbma space group symmetry. The phase ratio of P2 to the orthorhombic phase is 55.0(5):45.0(4). A single-phase P2 structure is found to form at 1000 °C after modification with alkali metals Rb and Cs, while the K-modified form produces an additional minor impurity. The modification is the addition of the alkali elements during synthesis that do not appear to be doped into the crystal structure. As a cathode for NIBs, parent Na0.7MnO2 shows a second charge/discharge capacity of 143/134 mAh g-1, K-modified Na0.7MnO2 a capacity of 184/178 mAh g-1, Rb-modified Na0.9MnO2 a capacity of 159/150 mAh g-1, and Cs-modified Na0.7MnO2 a capacity of 171/163 mAh g-1 between 1.5 and 4.2 V at a current density of 15 mA g-1. The parent Na0.7MnO2 is compared with alkali metal (K, Rb, and Cs)-modified NaxMnO2 in terms of surface morphology using scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, scanning electron microscopy, 23Na solid-state nuclear magnetic resonance, and X-ray photoelectron spectroscopy and in terms of electrochemical performance and structural electrochemical evolution using in situ or operando synchrotron X-ray diffraction.

9.
Cell Metab ; 32(3): 468-478.e7, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32791101

ABSTRACT

The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1ß, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1-/- macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and "dicarboxypropylated" C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1ß release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders.


Subject(s)
Immunologic Factors/pharmacology , Inflammasomes/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Succinates/pharmacology , Animals , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
10.
ACS Omega ; 5(13): 7584-7592, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32280902

ABSTRACT

The synergistic incorporation of anatase TiO2 domains into siliceous TUD-1 was optimized in this work and the resulting sample was implemented as the electrode in lithium-ion batteries. Triethanolamine was used as both the templating and complexing agent, the Si/Ti ratio was controlled, and the formation of Ti-O-Si bridges was optimized, as revealed through Fourier transform infrared spectroscopy, with the porous character of the materials being confirmed with N2 adsorption-desorption isotherms. The controlled formation of Ti-O-Si bridges resulted in attractive specific charge capacities, high rate capability, and a good retention of capacity. The electrochemical performance of the composite material clearly demonstrates a synergistic effect between pure TiO2 in its anatase form and the otherwise inactive siliceous TUD-1 matrix. Specific capacities of 300 mA h g-1 with a retention of 94% were obtained at a current density of 0.1 A g-1 over 100 cycles. This work showcases the use of bifunctional templating agents in the improvement of the performance and the long-term cyclability of composite electrodes, which can be potentially applied in future synthesis of energy materials.

11.
Inorg Chem ; 59(6): 3619-3630, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32124614

ABSTRACT

A 2-D coordination framework, (NEt4)2[Fe2(fan)3] (1·5(acetone); H2fan = 3,6-difluoro-2,5-dihydroxy-1,4-benzoquinone), was synthesized and structurally characterized. The compound is structurally analogous to a formerly elucidated framework, (NEt4)2[Fe2(can)3] (H2can = 3,6-dichloro-2,5-dihydroxy-1,4-benzoquinone), and adopts a 2-D (6,3) topology with the symmetrical stacking of [Fe2(fan)3]2- sheets that are held in position by the NEt4+ cations between the sheets. The investigation of the dc and ac magnetic properties of 1·5(acetone) revealed ferromagnetic ordering behavior and slow magnetization relaxation, as evinced from ac susceptibility measurements. Furthermore, the exposure of 1·5(acetone) to air led to the formation of a heptahydrate 1·7H2O which displayed distinct magnetic properties. The study of the redox state and extent of delocalization in 1·5(acetone) was undertaken via crystallography, in combination with Mössbauer and vis-NIR spectroscopy, to reveal the mixed-valence and delocalized nature of the as-synthesized material. As a result, the conductivity studies conducted on a pressed pellet showed a relatively high conductivity of 1.8 × 10-2 S cm-1 (300 K). In order to compare structurally related anilate-based structures, a relationship among the redox state, spectroscopic properties, and electronic properties was elucidated in this work. A preliminary investigation of 1·5(acetone) as a candidate anode material in lithium ion batteries revealed a high reversible capacity of 676.6 mAh g-1 and high capacity retention.

12.
Chemistry ; 26(25): 5619-5628, 2020 May 04.
Article in English | MEDLINE | ID: mdl-31985087

ABSTRACT

In this work, a latent energy-transfer process in traditional Eu3+ ,Tb3+ -doped phosphors is proposed and a new class of Eu3+ ,Tb3+ -doped Na4 CaSi3 O9 (NCSO) phosphors is presented which is enabled by luminescence decay dynamics that optimize the electron-transfer energy process. Relative to other Eu3+ ,Tb3+ -doped phosphors, the as-synthesized Eu3+ ,Tb3+ -doped NCSO phosphors show improved large-scale tunable emission color from green to red upon UV excitation, controlled by the Tb3+ /Eu3+ doping ratio. Detailed spectroscopic measurements in the vacuum ultraviolet (VUV)/UV/Vis region were used to determine the Eu3+ -O2- charge-transfer energy, 4f-5d transition energies, and the energies of 4f excited multiplets of Eu3+ and Tb3+ with different 4fN electronic configurations. The Tb3+ →Eu3+ energy-transfer pathway in the co-doped sample was systematically investigated, by employing luminescence decay dynamics analysis to elucidate the relevant energy-transfer mechanism in combination with the appropriate model simulation. To demonstrate their application potential, a prototype white-light-emitting diode (WLED) device was successfully fabricated by using the yellow luminescence NCSO:0.03Tb3+ , 0.05Eu3+ phosphor with high thermal stability and a BaMgAl10 O17 :Eu2+ phosphor in combination with a near-UV chip. These findings open up a new avenue to realize and develop multifunctional high-performance phosphors by manipulating the energy-transfer process for practical applications.

13.
Inorg Chem ; 58(20): 13881-13891, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31584267

ABSTRACT

Li3Co2SbO6 is found to adopt two highly distinct structural forms: a pseudohexagonal (monoclinic C2/m) layered O3-LiCoO2 type phase with "honeycomb" 2:1 ordering of Co and Sb, and an orthorhombic Fddd phase, isostructural with Li3Co2TaO6 but with the addition of significant Li/Co ordering. Pure samples of both phases can be obtained by conventional solid-state synthesis via a precursor route using Li3SbO4 and CoO, by controlling particle size, initial lithium excess, and reaction time. Both phases show relatively poor performance as lithium-ion battery cathode materials in their as-made states, but complex and interesting low-temperature magnetic properties. The honeycomb phase is the first of its type to show A-type antiferromagnetic order (ferromagnetic planes, antiferromagnetically coupled) below TN = 14 K. Isothermal magnetization and in-field neutron diffraction below TN show clear evidence for a metamagnetic transition at H ≈ 0.7 T to three-dimensional ferromagnetic order. The orthorhombic phase orders antiferromagnetically below TN = 112 K and then undergoes two more transitions at 80 and 60 K. Neutron diffraction data show that the ground state is incommensurate.

14.
Inorg Chem ; 58(18): 12317-12324, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31441648

ABSTRACT

The room-temperature structure of brownmillerite-type Sr2Fe2O5 remains controversial, despite numerous published crystallographic studies utilizing X-ray, neutron, and electron diffraction data collected on single-crystalline and powder samples. The main disagreements concern the ordering of twisted FeO4 tetrahedral chains within and between the layers stacked along the b axis, and the impact of this ordering on oxide-ionic conductivity. Here, we present new data along with a reinterpretation of previously published diffraction images, including the reassignment of satellite reflections, which harmonize the results of past studies in a unified description of tetrahedral chain ordering in Sr2Fe2O5 at length scales relevant to X-ray and neutron diffraction. Implications for the prevailing model of oxide ion transport in this material are also discussed.

15.
Inorg Chem ; 58(7): 4164-4172, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30839202

ABSTRACT

Melilite-type Ba2MnSi2O7 was synthesized by a standard powder solid-state reaction route, and its magnetic properties were studied at low temperature. The magnetic structure was found to be C-type pointing along the c axis from neutron powder diffraction, which is different from the G-type ordering previously reported in all other 2-2-4-2 melilites with manganese as the B'-site transition metal. Ab initio (density functional theory) and magnetic dipole-dipole calculations were used to understand the magnetic structure by determining the spin supersuperexchange parameters as well as the relative influence of spin-orbit coupling and the magnetic dipole-dipole interactions.

16.
Chem Commun (Camb) ; 55(27): 3887-3890, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30882112

ABSTRACT

Having identified a set of conditions that predispose a solid-state ionic compound to a pressure-induced valence transition, we investigated a series of Bi(iii) perovskite oxides. We found such a transition below 10 GPa in every case, including one that we synthesised for the first time (double perovskite-type Ba2BiOsO6).

17.
Dalton Trans ; 48(11): 3576-3582, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30741285

ABSTRACT

This work demonstrates that simple copper-bipyridine compounds and atmospheric CO2 react to produce useful/complex materials under appropriate conditions. Starting from a distorted square planar copper(ii) complex, [(tbubpy)CuCl2](tbubpy = 4-tert-butyl-2-(4-tert-butylpyridin-2-yl)pyridine), an air-sensitive, copper(i) complex, [(tbubpy)2CuI][BF4], which exhibits a distorted tetrahedral geometry, was synthesized and characterized. Reactions of [(tbubpy)2CuI][BF4] with CO2 inside a sealed tube and with air were carried out over a week and three weeks, respectively. A new tricopper(ii)-carbonato cluster, [{(tbubpy)2Cu}3(µ-CO3)][PF6]4, was isolated with three distorted octahedral copper(ii) centres bound by a carbonate-bridge formed from atmospheric CO2. NMR and UV-Vis spectroscopic analyses coupled with previous reports point to a multi-step process in the formation of a trinuclear CuII-carbonato cluster that includes the probable involvement of µ-hydroxo-bridged dicopper(ii) type intermediates.

18.
Nanotechnology ; 30(15): 155701, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-30641511

ABSTRACT

We design a facile approach to prepare a bimetallic transition-metal-sulphide-based 3D hierarchically-ordered porous electrode based on bimetallic metal-organic frameworks (Ni-Co-MOFs) by using confinement growth and in-situ sulphurisation techniques. In the novel resulting architectures, Ni-Co-S nanoparticles are confined in bowknot-like and flower-like carbon networks and are mechanically isolated but electronically well-connected, where the carbon networks with a honeycomb-like feature facilitate electron transfer with uninterrupted conductive channels from all sides. Moreover, these hierarchically-ordered porous structures together with internal voids can accommodate the volume expansion of the embedded Ni-Co-S nanoparticles. The pseudocapacitive behaviours displayed in the NCS@CBs and NCS@CFs occupied a significant portion in the redox processes. Because of these merits, both the as-built bowknot and flower networks show excellent electrochemical properties for lithium storage with superior rate capability and robust cycling stability (994 mAh g-1 for NCS@CBs and 888 mAh g-1 for NCS@CFs after 200 cycles). This unique 3D hierarchically-ordered structural design is believed to hold great potential applications in propagable preparation of carbon networks teamed up with sulphide nanocrystals for high energy storage.

19.
Dalton Trans ; 46(19): 6409-6416, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28466907

ABSTRACT

Twisted-melilite dipotassium cobalt pyrophosphate (K2CoP2O7, P42/mnm, #136), originally reported by Gabelica-Robert (1981), was synthesized in powder form by a standard solid-state reaction route. The magnetic properties of the material were studied by magnetometry and its magnetic structure determined using neutron powder diffraction for the first time. Below TN = 11 K, the material adopts a G-type antiferromagnetic structure with moments aligned in the ab-plane (magnetic space group Pn'nm, #58.3.473). Ab initio calculations were performed to examine the isotropic magnetic spin exchange parameters as well as the preferred direction of magnetic moments due to spin-orbit coupling. The relationship between crystal structure geometry and the strength of the magnetic interactions was examined and compared to those of melilite-type Sr2CoGe2O7.

20.
J Phys Chem B ; 121(21): 5439-5446, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28460174

ABSTRACT

Understanding the short-range molecular motions of organic ionic plastic crystals is critical for the application of these materials as solid-state electrolytes in electrochemical devices such as lithium batteries. However, the theory of short-range-motions was originally developed for simple molecular plastic crystals and does not take account of strong interionic interactions that are present in organic ionic plastic crystals. Here we report a fundamental investigation of the dynamic behavior of an archetypal example triethyl(methyl)phosphonium bis(fluorosulfonyl)amide ([P1222][FSI]) through calorimetry, impedance spectroscopy, synchrotron X-ray diffraction, and solid-state NMR and Raman spectroscopies. For the first time, we show the presence of conformational dynamics in the solid state for the FSI anion. We relate the dynamics to a unique second-order displacive phase transition of [P1222][FSI]. This detailed analysis suggests a new disorder mechanism involving cooperative motion between the cation and FSI anion in the plastic crystal due to strong interionic interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...