Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Small ; 20(23): e2310107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38111369

ABSTRACT

Solar-blind ultraviolet (SBUV) to near-infrared (NIR) broadband photodetectors (BB-PD) have important applications in environmental monitoring and other applications. However, it is challenging to prepare SBUV-IR photosensitive materials via simple steps and to construct SBUV-IR broadband devices for multiplex detection with high sensitivity at different wavelengths. Here, self-powered and broadband photodetectors using a high-performance mixed dimensional Sb2O3 nanorod 1-dimension (1D)/monodisperse microdiamond-like PdTe2 3-dimension (3D)/Si (3D) heterojunction for multiplex detection of environmental pollutants with high sensitivity at broadband wavelength are developed. The 1D/3D mixed dimensional Sb2O3/PdTe2/Si structure combines the advantages of strong light absorption, high carrier transport efficiency of 1D Sb2O3 nanorods, and expansion of interface barrier caused by 3D microdiamond-like PdTe2 interlayer to improve the photocurrent density and self-powered ability. The efficient photogenerated charge separation enables anon/off ratio of more than 5 × 106. The device exhibits excellent photoelectric properties from 255 to 980 nm with the responsivity from 4.56 × 10-2 to 6.55 × 10-1 AW-1, the detectivity from 2.36 × 1012 to 3.39 × 1013 Jones, and the sensitivity from 3.90 × 107 to 1.10 × 1010 cm2 W-1 without external bias. Finally, the proposed device is applied for the multiplex monitoring of environmental pollution gases NO2 with the detection limit of 200 ppb and PM2.5 particles at mild pollution at broadband wavelength. The proposed BB-PD has great potential for multiplex detection of environmental pollutants and other analytes at broadband wavelength.

2.
ACS Appl Mater Interfaces ; 15(4): 5411-5419, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36655912

ABSTRACT

Inorganic nanomaterials such as graphene, black phosphorus, and transition metal dichalcogenides have attracted great interest in developing optoelectronic devices due to their efficient conversion between light and electric signals. However, the zero band gap nature, the unstable chemical properties, and the low electron mobility constrained their wide applications. Bismuth oxyselenide (Bi2O2Se) is gradually showing great research significance in the optoelectronic field. Here, we develop a bismuth oxyselenide/p-silicon (Bi2O2Se/p-Si) heterojunction and design a self-powered and broadband Bi2O2Se/p-Si heterojunction photodetector with an ultrafast response (2.6 µs) and low dark current (10-10 A without gate voltage regulation). It possesses a remarkable detectivity of 4.43 × 1012 cm Hz1/2 W-1 and a self-powered photoresponse characteristic at 365-1550 nm (ultraviolet-near-infrared). Meanwhile, the Bi2O2Se/p-Si heterojunction photodetector also shows high stability and repeatability. It is expected that the proposed Bi2O2Se/p-Si heterojunction photodetector will expand the applications of Bi2O2Se in practical integrated circuits in the field of material science, energy development, optical imaging, biomedicine, and other applications.

3.
ACS Appl Mater Interfaces ; 12(31): 35250-35258, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32660231

ABSTRACT

A broad spectral response is highly desirable for radiation detection in modern optoelectronics; however, it still remains a great challenge. Herein, we report a novel ultrabroadband photodetector based on a high-quality tin monoselenide (SnSe) thin film, which is even capable of detecting photons with energies far below its optical band gap. The wafer-size SnSe ultrathin films are epitaxially grown on sodium chloride via the 45° in-plane rotation by employing a sputtering method. The photodetector delivers sensitive detection to ultraviolet-visible-near infrared (UV-Vis-NIR) lights in the photoconductive mode and shows an anomalous response to long-wavelength infrared at room temperature. Under the mid-infrared light of 10.6 µm, the fabricated photodetector exhibits a large photoresponsivity of 0.16 A W-1 with a fast response rate, which is ∼3 orders of magnitude higher than other results. The thermally induced carriers from the photobolometric effect are responsible for the sub-bandgap response. This mechanism is confirmed by a temperature coefficient of resistance of -2.3 to 4.4% K-1 in the film, which is comparable to that of the commercial bolometric detectors. Additionally, the flexible device transferred onto polymer templates further displays high mechanical durability and stability over 200 bending cycles, indicating great potential toward developing wearable optoelectronic devices.

4.
Nanotechnology ; 30(41): 415203, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31261145

ABSTRACT

A simple hydrogenation treatment is used to synthesize unique oxygen-deficient TiO2 with a core/shell structure (TiO2@TiO2-xHx), superior to the high H2-pressure process (under 20 bar for five days). It is demonstrated that oxygen-deficient TiO2 nanoparticle film/Si heterojunction possesses improved photoresponse performance compared to the untreated TiO2 nanoparticle film/Si heterojunction. Particularly, under 900 nm of 0.5 µW cm-2, the oxygen-deficient TiO2 nanoparticle film (TiO2@TiO2-xHx core-shell nanoparticle film)/Si heterojunction shows high responsivity (R) of 336 A W-1, prominent sensitivity (S) of 1.3 × 107 cm2 W-1, accompanied with a fast rise and decay time of 6 and 5 ms, respectively. Significantly, the detectivity (D*) of the photodetector is up to 1.17 × 1014 cm Hz1/2 W-1, which is better than that reported in metal oxide nanomaterials/Si heterojunction photodetectors, and is 4-5 orders of magnitude higher than some 2D nanosheets/Si heterojunctions of 109-1010 cm Hz1/2 W-1, indicating the excellent ability to detect weak signals. The oxygen vacancies generated in amorphous shell TiO2-xHx make the Fermi level of TiO2-x shift near the conduction band minimum and can lead to reduced dark current. The high absorption and reduced dark current of the heterojunction ensure excellent photoresponse properties of oxygen-deficient TiO2 nanoparticle film/Si heterojunction. The H-reduced oxygen-deficient amorphous shell may be an excellent candidate to enhance the photoresponse performance of metal oxide/Si heterojunction.

5.
ACS Appl Mater Interfaces ; 9(36): 31161-31169, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28832119

ABSTRACT

Development of high-performance sorbents is extremely significant for CO2 capture due to its increasing atmospheric concentration and impact on environmental degradation. In this work, we develop a new model of C3N pores based on GCMC calculations to describe its CO2 adsorption capacity and selectivity. Remarkably, it exhibits an outstanding CO2 adsorption capacity and selectivity. For example, at 0.15 bar it shows exceptionally high CO2 uptakes of 3.99 and 2.07 mmol/g with good CO2/CO, CO2/H2, and CO2/CH4 selectivity at 300 and 350 K, separately. More importantly, this adsorbent also shows better water stability. Specifically, its CO2 uptakes are 3.80 and 5.91 mmol/g for and 0.15 and 1 bar at 300 K with a higher water content. Furthermore, DFT calculations demonstrate that the strong interactions between C3N pores and CO2 molecules contribute to its impressive CO2 uptake and selectivity, indicating that C3N pores can be an extremely promising candidate for CO2 capture.

6.
ACS Sens ; 2(5): 679-686, 2017 May 26.
Article in English | MEDLINE | ID: mdl-28723168

ABSTRACT

In this paper, a facile and elegant Green Chemistry method for the synthesis of SnO2 based hollow spheres has been investigated. The influences of doping, crystallite morphology, and operating condition on the O2 sensing performances of SnO2 based hollow-sphere sensors were comprehensively studied. It was indicated that, compared with undoped SnO2, 10 at. % LaOCl-doped SnO2 possessed better O2 sensing characteristics owing to an increase of specific surface area and oxygen vacancy defect caused by LaOCl dopant. More importantly, it was found that O2 sensing properties of the 10 at. % LaOCl-SnO2 sensor were significantly improved by ultraviolet light illumination, which was suited for room-temperature O2 sensing applications. Besides, this sensor also had a better selectivity to O2 with respect to H2, CH4, NH3, and CO2. The remarkable increase of O2 sensing properties by UV light radiation can be explained in two ways. On one hand, UV light illumination promotes the generation of electron-hole pairs and oxygen adsorption, giving rise to high O2 response. On the other hand, UV light activates desorption of oxygen adsorbates when exposed to pure N2, contributing to rapid response/recovery speed. The results demonstrate a promising approach for room-temperature O2 detection.

7.
Nanoscale ; 9(25): 8848-8857, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28632267

ABSTRACT

The SnO2/Si heterojunction possesses a large band offset and it is easy to control the transportation of carriers in the SnO2/Si heterojunction to realize high-response broadband detection. Therefore, we investigated the potential of the SnO2 nanoparticle thin film/SiO2/p-Si heterojunction for photodetectors. It is demonstrated that this heterojunction shows a stable, repeatable and broadband photoresponse from 365 nm to 980 nm. Meanwhile, the responsivity of the device approaches a high value in the range of 0.285-0.355 A W-1 with the outstanding detectivity of ∼2.66 × 1012 cm H1/2 W-1 and excellent sensitivity of ∼1.8 × 106 cm2 W-1, and its response and recovery times are extremely short (<0.1 s). This performance makes the device stand out among previously reported oxide or oxide/Si based photodetectors. In fact, the photosensitivity and detectivity of this heterojunction are an order of magnitude higher than that of 2D material based heterojunctions such as (Bi2Te3)/Si and MoS2/graphene (photosensitivity of 7.5 × 105 cm2 W-1 and detectivity of ∼2.5 × 1011 cm H1/2 W-1). The excellent device performance is attributed to the large Fermi energy difference between the SnO2 nanoparticle thin film and Si, SnO2 nanostructure, oxygen vacancy defects and thin SiO2 layer. Consequently, practical highly-responsive broadband PDs may be actualized in the future.

8.
Nanotechnology ; 28(13): 135703, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28248644

ABSTRACT

Development of low energy cost membranes for separating helium from natural gas is highly desired. Using van der Waals-corrected first-principles density functional theory (DFT) calculations, we theoretically investigate the helium separation performance of divacancy-defective germanene. The 555 777 divacancy-defective germanene presents a 0.53 eV energy barrier for helium, which is slightly larger than the energy threshold value of gas molecule penetration of a membrane (0.5 eV). Thus, the 555 777 divacancy-defective germanene is difficult for helium to permeate, except under high temperature or pressure. However, the 585 divacancy-defective germanene presents a surmountable energy barrier (0.27 eV) for helium, and it shows extremely high helium selectivities relative to other studied gas molecules. Especially, the He/Ne selectivity can be as high as 1 × 104 at room temperature. Together with the acceptable permeance for helium, the 585 divacancy-defective germanene can be used for helium separation with remarkably good performance.

9.
ACS Appl Mater Interfaces ; 9(9): 8336-8343, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28215069

ABSTRACT

By use of grand canonical Monte Carlo calculations, we study the effects of sulfur doping and humidity on the performance of graphite split pore as an adsorbent for CO2 capture. It is demonstrated that S doping can greatly enhance pure CO2 uptake by graphite split pore. For example, S-graphite split pore with 33.12% sulfur shows a 39.85% rise in pure CO2 uptake (51.001 mmol/mol) compared with pristine graphite split pore at 300 K and 1 bar. More importantly, it is found that S-graphite split pore can still maintain much higher CO2 uptake than that by pristine graphite split pore in the presence of water. Especially, uptake by 33.12% sulfur-doped S-graphite split pore is 51.963 mmol of CO2/mol in the presence of water, which is 44.34% higher than that by pristine graphite split pore at 300 K and 1 bar. In addition, CO2/N2 selectivity of S-graphite split pore increases with increasing S content, resulting from stronger interactions between CO2 and S-graphite split pore. Moreover, by use of density functional theory calculations, we demonstrate that S doping can enhance adsorption energy between CO2 molecules and S-graphene surface at different humidities and furthermore enhance CO2 uptake by S-graphite split pore. Our results indicate that S-graphite split pore is a promising adsorbent material for humid CO2 capture.

10.
ACS Appl Mater Interfaces ; 6(11): 8048-58, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24621326

ABSTRACT

First-principle density functional theory (DFT) calculation and molecular dynamic (MD) simulation are employed to investigate the hydrogen purification performance of two-dimensional porous graphene material (PG-ESX). First, the pore size of PG-ES1 (3.2775 Å) is expected to show high selectivity of H2 by DFT calculation. Then MD simulations demonstrate the hydrogen purification process of the PG-ESX membrane. The results indicate that the selectivity of H2 over several other gas molecules that often accompany H2 in industrial steam methane reforming or dehydrogenation of alkanes (such as N2, CO, and CH4) is sensitive to the pore size of the membrane. PG-ES and PG-ES1 membranes both exhibit high selectivity for H2 over other gases, but the permeability of the PG-ES membrane is much lower than the PG-ES1 membrane because of the smaller pore size. The PG-ES2 membrane with bigger pores demonstrates low selectivity for H2 over other gases. Energy barrier and electron density have been used to explain the difference of selectivity and permeability of PG-ESX membranes by DFT calculations. The energy barrier for gas molecules passing through the membrane generally increase with the decreasing of pore sizes or increasing of molecule kinetic diameter, due to the different electron overlap between gas and a membrane. The PG-ES1 membrane is far superior to other carbon membranes and has great potential applications in hydrogen purification, energy clean combustion, and making new concept membrane for gas separation.

11.
Nanoscale ; 5(10): 4191-9, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23334090

ABSTRACT

We use molecular dynamics (MD) simulations to show that a DNA-like double helix of two poly(acetylene) (PA) chains can form inside single-walled carbon nanotubes (SWNTs). The computational results indicate that SWNTs can activate and guide the self-assembly of polymer chains, allowing them to adopt a helical configuration in a SWNT through the combined action of the van der Waals potential well and the π-π stacking interaction between the polymer and the inner surface of SWNTs. Meanwhile both the SWNT size and polymer chain stiffness determine the outcome of the nanostructure. Furthermore, we also found that water clusters encourage the self-assembly of PA helical structures in the tube. This molecular model may lead to a better understanding of the formation of a double helix biological molecule inside SWNTs. Alternatively, it could form the basis of a novel nanoscale material by utilizing the 'empty' spaces of SWNTs.


Subject(s)
DNA , Models, Chemical , Nanotubes, Carbon/chemistry , Polyynes/chemistry , Nanotubes, Carbon/ultrastructure
12.
Nanoscale ; 4(17): 5477-82, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22850863

ABSTRACT

The separation of CO2 from a mixture of CO2 and N2 using a porous graphene membrane was investigated using molecular dynamics (MD) simulations. The effects of chemical functionalization of the graphene sheet and pore rim on the gas separation performance of porous graphene membranes were examined. It was found that chemical functionalization of the graphene sheet can increase the absorption ability of CO2, while chemical functionalization of the pore rim can significantly improve the selectivity of CO2 over N2. The results show that the porous graphene membrane with all-N modified pore-16 exhibits a higher CO2 selectivity over N2 (∼11) due to the enhanced electrostatic interactions compared to the unmodified graphene membrane. This demonstrates the potential use of functionalized porous graphene as single-atom-thick membrane for CO2 and N2 separation. We provide an effective way to improve the gas separation performance of porous graphene membranes, which may be useful for designing new concept membranes for other gases.

13.
Nanoscale ; 4(13): 3894-900, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22628092

ABSTRACT

The effect of functional groups on the radial collapse and elasticity of a single-walled carbon nanotube (SWNT) under hydrostatic pressure was investigated using molecular dynamics and molecular mechanics simulations. It is found that the radial collapse and elasticity of the chemically modified SWNTs strongly depend on the polarity of the functional groups and the degree of functionalization. The results show that the fluorine modified SWNT (F-SWNT), on which 2.5-5.0% of the atoms are attached to -F groups, can sustain the original elasticity of the intrinsic SWNT, and the pressure needed to collapse the F-SWNT increases by 11.3-21.8%. Functional groups such as hydroxyl groups, amino groups and carboxylic groups can increase the pressure needed to collapse the modified SWNTs, but decrease their radial elasticity. Therefore, the F-SWNTs, due to the higher collapse pressure, are ideal fillers for nanocomposites for high load mechanical support.

SELECTION OF CITATIONS
SEARCH DETAIL
...