Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 347: 123671, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38442824

ABSTRACT

Considerable research has been conducted to evaluate microplastics (MPs) as vehicles for the transfer of hazardous pollutants in organisms. However, little effort has been devoted to the chemical release of hazardous additive-derived pollutants from MPs in gut simulations. This study looked at the leaching kinetics of organophosphate esters (OPFRs) from polypropylene (PP) and polystyrene (PS) MPs in the presence of gut surfactants, specifically sodium taurocholate, at two biologically relevant temperatures for marine organisms. Diffusion coefficients of OPFRs ranged from 1.71 × 10-20 to 4.04 × 10-18 m2 s-1 in PP and 2.91 × 10-18 to 1.51 × 10-15 m2 s-1 in PS. The accumulation factors for OPFRs in biota-plastic and biota-sediment interactions ranged from 1.52 × 10-3-69.1 and 0.02-0.7, respectively. Based on B3LYP/6-31G (d,p) calculations, the biodynamic model analysis revealed a slight increase in the bioaccumulation of OPFRs at a minor dose of 0.05% MPs. However, at higher concentrations (0.5% and 5% MPs), there was a decrease in bioaccumulation compared to the lower concentration for most OPFR compounds. In general, the ingestion of PE MPs notably contributed to the bioaccumulation of OPFRs in lugworms, whereas the contribution of PP and PS MPs was minimal. This could vary among sites exhibiting varying levels of MP concentrations or MPs displaying stronger affinities towards chemicals.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Microplastics/metabolism , Plastics , Bioaccumulation , Polystyrenes/metabolism , Organophosphates , Polypropylenes
2.
Sci Total Environ ; 924: 171287, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38423316

ABSTRACT

It remains challenging to establish reliable links between transformation products (TPs) of contaminants and corresponding microbes. This challenge arises due to the sophisticated experimental regime required for TP discovery and the compositional nature of 16S rRNA gene amplicon sequencing and mass spectrometry datasets, which can potentially confound statistical inference. In this study, we present a new strategy by combining the use of 2H-labeled Stable Isotope-Assisted Metabolomics (2H-SIAM) with a neural network-based algorithm (i.e., MMvec) to explore links between TPs of pyrene and the soil microbiome. The links established by this novel strategy were further validated using different approaches. Briefly, a metagenomic study provided indirect evidence for the established links, while the identification of pyrene degraders from soils, and a DNA-based stable isotope probing (DNA-SIP) study offered direct evidence. The comparison among different approaches, including Pearson's and Spearman's correlations, further confirmed the superior performance of our strategy. In conclusion, we summarize the unique features of the combined use of 2H-SIAM and MMvec. This study not only addresses the challenges in linking TPs to microbes but also introduces an innovative and effective approach for such investigations. Environmental Implication: Taxonomically diverse bacteria performing successive metabolic steps of the contaminant were firstly depicted in the environmental matrix.


Subject(s)
Microbiota , Soil , Soil/chemistry , RNA, Ribosomal, 16S , Isotopes/analysis , DNA , Pyrenes , Neural Networks, Computer , Soil Microbiology
3.
Chemosphere ; 350: 141142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185427

ABSTRACT

Tetrachlorobisphenol A (TCBPA) has been used as an alternative flame retardant in various fields. However, the long-term effects of TCBPA on the nervous system remain unclear. Thus, Caenorhabditis elegans (L4 larvae) were selected as a model animal to investigate the neurotoxic effects and underlying mechanisms after 10 d of TCBPA exposure. Exposure to TCBPA (0.01-100 µg/L) decreased locomotive behavior in a concentration-dependent manner. In addition, reactive oxygen species (ROS) formation and lipofuscin accumulation were significantly increased, and the expression of sod-3 was upregulated in the exposed nematodes, indicating that TCBPA exposure induced oxidative damage. Furthermore, 100 µg/L TCBPA exposure caused a reduction in dopamine and serotonin levels, and damage in dopaminergic and serotoninergic neurons, which was further confirmed by the downregulated expression of related genes (e.g., dop-1, dop-3, cat-1, and mod-1). Molecular docking analysis demonstrated the potential of TCBPA to bind to the neurotransmitter receptor proteins DOP-1, DOP-3, and MOD-1. These results indicate that chronic exposure to TCBPA induces neurotoxic effects on locomotive behavior, which is associated with oxidative stress and damage to dopaminergic and serotoninergic neurons.


Subject(s)
Caenorhabditis elegans Proteins , Neurotoxicity Syndromes , Polybrominated Biphenyls , Animals , Caenorhabditis elegans , Molecular Docking Simulation , Oxidative Stress , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Neurotoxicity Syndromes/etiology , Neurons/metabolism
4.
Int J Anal Chem ; 2023: 6350669, 2023.
Article in English | MEDLINE | ID: mdl-37877028

ABSTRACT

Antibiotics and pesticides are widespread in most rivers and lakes due to the overuse of antibiotics and pesticides, but there are few methods for simultaneous analysis of antibiotics and pesticides in aquatic environments. To address this knowledge gap, a concise and sensitive analytical method is proposed in which three classes of human and veterinary drugs (sulfonamides, macrolides, and hormones) and two classes of pesticides (organophosphorus and neonicotinoids) are simultaneously extracted and determined in surface water. The solid-phase extraction column with Cleanert PEP-2 was preconditioned sequentially with 6 mL of methanol, ultrapure water, and citric acid buffer (pH 3.0) each for simultaneous extraction and further purification. The forty-seven target analytes were analysed by LC-MS/MS in positive and negative ion modes. The LC separation was performed using a Sigma-Aldrich C18 column with 0.1% formic acid in water and acetonitrile as a gradient eluting mobile phase in positive ion mode. The internal standard method was used to overcome the inevitable matrix effects in LC-MS/MS analysis. The matrix effects of most target analytes were in the range of 27-151%. The recoveries of forty analytes in the three concentrations (10, 50, and 100 ng L-1) of surface water spiked samples ranged from 41 to 127%. The method quantitative limits of the analytes were in the range of 0.40-5.49 ng L-1. Application of the method to analyze samples in the eight runoff outlets of the Pearl River Delta showed that some antibiotics and pesticides were detected, and the concentration of parathion was as high as 154 ng L-1. A powerful tool for quickly and efficiently screening for contaminants in surface water has been presented.

5.
Environ Sci Pollut Res Int ; 29(44): 66950-66959, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35511329

ABSTRACT

The suspected endocrine disruptor nonylphenol (NP) is closely associated with anthropogenic activities; therefore, studies on this compound have been clustered in urban areas. This study investigated the NP concentrations in drinking water sources (n = 8), terminal tap water (n = 36), and human urine samples (n = 127) collected from urban and rural areas in Wuhan, China. The mean concentrations of NP measured in drinking water sources in urban and rural areas were 92.3 ± 7.5 and 11.0 ± 0.8 ng/L (mean ± SD), respectively, whereas the mean levels in urban and rural tap waters were 5.0 ± 0.7 and 44.2 ± 2.6 ng/L (mean ± SD), respectively. Nevertheless, NP was detected in 74.1% and 75.4% of the human urine samples from urban and rural participants, with geometric mean concentrations of 0.19 ng/mL (0.26 µg/g creat) and 0.27 ng/mL (0.46 µg/g creat), respectively. Although the NP concentrations measured in the drinking water sources of urban areas were significantly higher than those in rural areas (P < 0.05), the tap water and urine NP concentrations measured in urban areas were unexpectedly lower than those of rural areas (P < 0.05). Additionally, this investigation showed that the materials comprising household water supply pipelines and drinking water treatment processes in the two areas were also different. Our results indicated that the levels of exposure to NP in drinking water and human urine in rural areas were not necessarily lower than those in urban areas. Thus, particular attention should be paid to rural areas in future studies of NP.


Subject(s)
Drinking Water , Endocrine Disruptors , Water Pollutants, Chemical , China , Environmental Monitoring/methods , Humans , Phenols , Water Pollutants, Chemical/analysis
6.
Article in English | MEDLINE | ID: mdl-35469118

ABSTRACT

The rapid spread of the coronavirus disease (COVID-19) pandemic in over 200 countries poses a substantial threat to human health. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, can be discharged with feces into the drainage system. However, a comprehensive understanding of the occurrence, presence, and potential transmission of SARS-CoV-2 in sewers, especially in community sewers, is still lacking. This study investigated the virus occurrence by viral nucleic acid testing in vent stacks, septic tanks, and the main sewer outlets of community where confirmed patients had lived during the outbreak of the epidemic in Wuhan, China. The results indicated that the risk of long-term emission of SARS-CoV-2 to the environment via vent stacks of buildings was low after confirmed patients were hospitalized. SARS-CoV-2 were mainly detected in the liquid phase, as opposed to being detected in aerosols, and its RNA in the sewage of septic tanks could be detected for only four days after confirmed patients were hospitalized. The surveillance of SARS-CoV-2 in sewage could be a sensitive indicator for the possible presence of asymptomatic patients in the community, though the viral concentration could be diluted more than 10 times, depending on the sampling site, as indicated by the Escherichia coli (E. coli) test. The comprehensive investigation of the community sewage drainage system is helpful to understand the occurrence characteristics of SARS-CoV-2 in sewage after excretion with feces and the feasibility of sewage surveillance for COVID-19 pandemic monitoring.

7.
Arch Pharm (Weinheim) ; 355(8): e2200086, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35484335

ABSTRACT

Cancer, the most significant cause of morbidity and mortality, has already posed a heavy burden on health care systems globally. In recent years, cancer treatment has made a significant breakthrough, but cancer cells inevitably acquire resistance, and the efficacy of the treatment is greatly reduced as the tumor progresses. To overcome the above issues, novel chemotherapeutics are needed urgently. Artemisinin and its derivatives-sesquiterpene lactone compounds possessing a unique peroxy bridge moiety-exhibit excellent safety and tolerability profiles. Mechanistically, artemisinin derivatives can promote cancer cell apoptosis, induce cell cycle arrest and autophagy, and inhibit cancer cell invasion and migration. Accordingly, artemisinin derivatives demonstrate promising anticancer efficacy both in vitro and in vivo, and even in clinical Phase I/II trials. The purpose of the present review article is to provide an emphasis on the current scenario (January 2017-January 2022) of artemisinin derivatives with potential anticancer activity, inclusive of artemisinin metal complexes, hybrids, and dimers. The structure-activity relationships and mechanisms of action are also discussed to facilitate the further rational design of more effective candidates.


Subject(s)
Antineoplastic Agents , Artemisinins , Coordination Complexes , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Artemisinins/pharmacology , Humans , Neoplasms/drug therapy , Structure-Activity Relationship
8.
Chemosphere ; 284: 131379, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34225108

ABSTRACT

Sulfidated nanoscale valent iron in form of FeS/Fe (0) shell-core nanoparticle has the aptitude to be a promising remediation material toward reductive removal of metal oxyanions. However, disrupted contact between Fe (0) core and FeS shell by thick iron oxides limited its reactivity improvement, and its mechanism of electron transfer remains unveiled. In this study, a novel sulfidated nZVI core-shell particles (FeS/Fe (0)) was fabricated via a modified post sulfidation approach to achieve a more uniform coverage of FeS for aqueous Cr(VI) sequestration. SEM and STEM tests confirmed the formation of the core-shell FeS/Fe (0) structure with a more solid interaction between FeS layer and Fe (0) core. The highest Cr(VI) removal rate was offered at optimal S/Fe molar ratio of 1/25 that the most chelated Fe2+ was also observed. The improved performance was due to that FeS shell with greater electronegativity could significantly accelerate the corrosion of Fe (0), facilitate the electron transfer form Fe (0) core to FeS shell according to the electrochemical tests. Moreover, FeS shell provided a protective layer for Fe (0) core so as to alleviate its anoxic passivation in water that FeS/Fe (0) had a better longevity for Cr(VI) removal than nFe (0). Characterizations of STEM and XPS revealed that Cr(VI) was reduced to Cr(III) and evenly coprecipitated with surface Fe(II)/Fe(III).


Subject(s)
Chromates , Water Pollutants, Chemical , Chromium/analysis , Electrons , Ferric Compounds , Ferrous Compounds , Water Pollutants, Chemical/analysis
9.
J Hazard Mater Lett ; 2: 100027, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34977842

ABSTRACT

Facing the ongoing coronavirus infectious disease-2019 (COVID-19) pandemic, many studies focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in indoor environment, on solid surface or in wastewater. It remains unclear whether SARS-CoV-2 can spill over into outdoor environments and impose transmission risks to surrounding people and communities. In this study, we investigated the presence of SARS-CoV-2 by measuring viral RNA in 118 samples from outdoor environment of three hospitals in Wuhan. We detected SARS-CoV-2 in soils (205-550 copies/g), aerosols (285-1,130 copies/m3) and wastewaters (255-18,744 copies/L) in locations close to hospital departments receiving COVID-19 patients or in wastewater treatment sectors. These findings revealed a significant viral spillover in hospital outdoor environments that was possibly caused by respiratory droplets from patients or aerosolized particles from wastewater containing SARS-CoV-2. In contrast, SARS-CoV-2 was not detected in other areas or on surfaces with regular implemented disinfection. Soils may behave as viral warehouse through deposition and serve as a secondary source spreading SARS-CoV-2 for a prolonged time. For the first time, our findings demonstrate that there are high-risk areas out of expectation in hospital outdoor environments to spread SARS-CoV-2, calling for sealing of wastewater treatment unit and complete sanitation to prevent COVID-19 transmission risks.

10.
Sci Total Environ ; 741: 140445, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32599407

ABSTRACT

The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia raises the concerns of effective deactivation of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in medical wastewater by disinfectants. In this study, we evaluated the presence of SARS-CoV-2 viral RNA in septic tanks of Wuchang Cabin Hospital and found a striking high level of (0.5-18.7) × 103 copies/L after disinfection with sodium hypochlorite. Embedded viruses in stool particles might be released in septic tanks, behaving as a secondary source of SARS-CoV-2 and potentially contributing to its spread through drainage pipelines. Current recommended disinfection strategy (free chlorine ≥0.5 mg/L after at least 30 min suggested by World Health Organization; free chlorine above 6.5 mg/L after 1.5-h contact by China Centers for Disease Control and Prevention) needs to be reevaluated to completely remove SARS-CoV-2 viral RNA in non-centralized disinfection system and effectively deactivate SARS-CoV-2. The effluents showed negative results for SARS-CoV-2 viral RNA when overdosed with sodium hypochlorite but had high a level of disinfection by-product residuals, possessing significant ecological risks.


Subject(s)
Coronavirus Infections , Disinfection , Pandemics , Pneumonia, Viral , Wastewater , Betacoronavirus , COVID-19 , China , Humans , Motor Vehicles , RNA, Viral/analysis , SARS-CoV-2
11.
J Hazard Mater ; 320: 150-159, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27544727

ABSTRACT

A heterogeneous manganese/magnetite/graphene oxide (Mn-MGO) hybrid catalyst was fabricated through the reduction of KMnO4 by ethylene glycol in the presence of magnetite/GO (MGO) particles. The Mn-MGO catalyst exhibited high efficacy and long-term stability in activating peroxymonosulfate (PMS) to generate sulfate radicals for the removal of bisphenol A (BPA) from water. The results of the batch experiments indicated that an increase in the catalyst dose and solution pH could enhance BPA degradation in the coupled Mn-MGO/PMS system. Regardless of the initial pH, the solution pH significantly dropped after the reaction, which was caused by catalytic PMS activation. The production of sulfate radicals and hydroxyl radicals was validated through radical quenching and electron paramagnetic resonances (EPR) tests. BPA degradation pathways were proposed on the basis of LC-MS and GC-MS analyses. Finally, a possible mechanism of catalytic PMS activation was proposed that involved electron transfer from MnO or Mn2O3 to PMS with the generation of sulfate radicals, protons and MnO2, as well as the simultaneous reduction of MnO2 by PMS.

12.
Sci Rep ; 4: 6233, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25167887

ABSTRACT

Fe-based bulk metallic glasses (BMGs) have attracted great attention due to their unique magnetic and mechanical properties, but few applications have been materialized because of their brittleness at room temperature. Here we report a new Fe(50)Ni(30)P(13)C(7) BMG which exhibits unprecedented compressive plasticity (>20%) at room temperature without final fracture. The mechanism of unprecedented plasticity for this new Fe-based BMG was also investigated. It was discovered that the ductile Fe(50)Ni(30)P(13)C(7) BMG is composed of unique clusters mainly linked by less directional metal-metal bonds which are inclined to accommodate shear strain and absorbed energy in the front of crack tip. This conclusion was further verified by the X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy experiments of Fe(80-x)Ni(x)P(13)C(7) (x = 0, 10, 20, 30) and Fe(72-x)Ni(x)B(20)Si(4)Nb(4) (x = 0, 7.2, 14.4, 21.6, 28.8) glassy systems. The results also indicate a strong correlation between the p-d hybridization and plasticity, verifying that the transition from brittle to ductile induced by Ni addition is due to the change of bonding characteristics in atomic configurations. Thus, we can design the plasticity of Fe-based BMGs and open up a new possible pathway for manufacturing BMGs with high strength and plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...