Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
2.
Virulence ; 13(1): 1349-1357, 2022 12.
Article in English | MEDLINE | ID: mdl-35924838

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has become a global pandemic since December 2019. Most of the patients are mild or asymptomatic and recovered well as those suffered from other respiratory viruses. SARS-CoV-2 infection is supposed to demonstrate more sequelae. Acute kidney injury (AKI) is common among COVID-19 patients and is associated with disease severity and outcomes. Only a few studies focused on a detailed analysis of kidney damage in asymptomatic or mildly symptomatic COVID-19 patients. Whether any minor viral infection is likely to exhibit similar minor effect on renal function as COVID-19 is still unclear, and the definite pathophysiology of viral invasion is not fully understood. Currently, the proposed mechanisms of AKI include direct effects of virus on kidney, dysregulated immune response, or as a result of multi-organs failure have been proposed. This study will discuss the difference between COVID-19 and other viruses, focusing on proposed mechanisms, biomarkers and whether it matters with clinical significance.


Subject(s)
Acute Kidney Injury , COVID-19 , Virus Diseases , COVID-19/complications , Humans , Kidney/physiology , SARS-CoV-2
3.
Neuropathol Appl Neurobiol ; 48(7): e12844, 2022 12.
Article in English | MEDLINE | ID: mdl-35906771

ABSTRACT

AIMS: Synaptic dysfunction in Parkinson's disease is caused by propagation of pathogenic α-synuclein between neurons. Previously, in multiple system atrophy (MSA), pathologically characterised by ectopic deposition of abnormal α-synuclein predominantly in oligodendrocytes, we demonstrated that the occurrence of memory impairment was associated with the number of α-synuclein-positive neuronal cytoplasmic inclusions (NCIs) in the hippocampus. In the present study, we aimed to investigate how abnormal α-synuclein in the hippocampus can lead to memory impairment. METHODS: We performed pathological and biochemical analyses using a mouse model of adult-onset MSA and human cases (MSA, N = 25; Parkinson's disease, N = 3; Alzheimer's disease, N = 2; normal controls, N = 11). In addition, the MSA model mice were examined behaviourally and physiologically. RESULTS: In the MSA model, inducible human α-synuclein was first expressed in oligodendrocytes and subsequently accumulated in the cytoplasm of excitatory hippocampal neurons (NCI-like structures) and their presynaptic nerve terminals with the development of memory impairment. α-Synuclein oligomers increased simultaneously in the hippocampus of the MSA model. Hippocampal dendritic spines also decreased in number, followed by suppression of long-term potentiation. Consistent with these findings obtained in the MSA model, post-mortem analysis of human MSA brain tissues showed that cases of MSA with memory impairment developed more NCIs in excitatory hippocampal neurons along with α-synuclein oligomers than those without. CONCLUSIONS: Our results provide new insights into the role of α-synuclein oligomers as a possible pathological cause of memory impairment in MSA.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/pathology , alpha-Synuclein/metabolism , Parkinson Disease/pathology , Inclusion Bodies/pathology , Neurons/pathology , Brain/pathology
4.
Mov Disord ; 37(6): 1131-1148, 2022 06.
Article in English | MEDLINE | ID: mdl-35445419

ABSTRACT

BACKGROUND: The second consensus criteria for the diagnosis of multiple system atrophy (MSA) are widely recognized as the reference standard for clinical research, but lack sensitivity to diagnose the disease at early stages. OBJECTIVE: To develop novel Movement Disorder Society (MDS) criteria for MSA diagnosis using an evidence-based and consensus-based methodology. METHODS: We identified shortcomings of the second consensus criteria for MSA diagnosis and conducted a systematic literature review to answer predefined questions on clinical presentation and diagnostic tools relevant for MSA diagnosis. The criteria were developed and later optimized using two Delphi rounds within the MSA Criteria Revision Task Force, a survey for MDS membership, and a virtual Consensus Conference. RESULTS: The criteria for neuropathologically established MSA remain unchanged. For a clinical MSA diagnosis a new category of clinically established MSA is introduced, aiming for maximum specificity with acceptable sensitivity. A category of clinically probable MSA is defined to enhance sensitivity while maintaining specificity. A research category of possible prodromal MSA is designed to capture patients in the earliest stages when symptoms and signs are present, but do not meet the threshold for clinically established or clinically probable MSA. Brain magnetic resonance imaging markers suggestive of MSA are required for the diagnosis of clinically established MSA. The number of research biomarkers that support all clinical diagnostic categories will likely grow. CONCLUSIONS: This set of MDS MSA diagnostic criteria aims at improving the diagnostic accuracy, particularly in early disease stages. It requires validation in a prospective clinical and a clinicopathological study. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Brain/pathology , Consensus , Humans , Magnetic Resonance Imaging , Multiple System Atrophy/diagnosis , Multiple System Atrophy/pathology , Prospective Studies
5.
J Formos Med Assoc ; 121 Suppl 1: S12-S19, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34972608

ABSTRACT

BACKGROUND/PURPOSE: End-stage kidney disease (ESKD) is a global burden that reflects each country's unique condition. We used the National Health Insurance Research Database (NHIRD) of Taiwan to decipher changes in the mortality and international survival rates and to determine the effectiveness of the pre-end-stage renal disease care program (pre-ESRD care program) to guide future health policies for ESKD. METHODS: We conducted a retrospective cohort analysis of the NHIRD data along with records from the catastrophic illness certificate program of ESKD patients from 2010 to 2018. RESULTS: From 2010 to 2018, the annual dialysis-related mortality rate in Taiwan increased from 10.6 to 11.8 deaths per hundred patient-years. The mortality rate for patients below 40 years appears to be decreasing, reflecting the improved quality of care for ESKD patients. Patients above 75 years showed increasing mortality, indicating the prolonged survival and aging of the ESKD population. Patients undergoing dialysis who participated in the pre-ESRD care program had a higher post-dialysis initiation life expectancy than those who did not participate. Among the program enrollees, the post-dialysis initiation life expectancy was higher in patients who had participated for more than one year. Taiwan has one of the highest ESKD patient survival rates globally. CONCLUSION: From 2010 to 2018, the reduced mortality in young patients and aging of the ESKD population might indicate that the quality of care in Taiwan for ESKD has improved. Furthermore, a better survival rate after dialysis initiation was observed in the pre-ESRD care program participants.


Subject(s)
Kidney Failure, Chronic , Humans , Renal Dialysis , Retrospective Studies , Survival Rate , Taiwan/epidemiology
6.
Int J Neonatal Screen ; 7(4)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34842611

ABSTRACT

Newborn screening (NBS) for Cystic Fibrosis (CF) is associated with improved outcomes. All US states screen for CF; however, CF NBS algorithms have high false positive (FP) rates. In New York State (NYS), the positive predictive value of CF NBS improved from 3.7% to 25.2% following the implementation of a three-tier IRT-DNA-SEQ approach using commercially available tests. Here we describe a modification of the NYS CF NBS algorithm via transition to a new custom next-generation sequencing (NGS) platform for more comprehensive cystic fibrosis transmembrane conductance regulator (CFTR) gene analysis. After full gene sequencing, a tiered strategy is used to first analyze only a specific panel of 338 clinically relevant CFTR variants (second-tier), followed by unblinding of all sequence variants and bioinformatic assessment of deletions/duplications in a subset of samples requiring third-tier analysis. We demonstrate the analytical and clinical validity of the assay and the feasibility of use in the NBS setting. The custom assay has streamlined our molecular workflow, increased throughput, and allows for bioinformatic customization of second-tier variant panel content. NBS aims to identify those infants with the highest disease risk. Technological molecular improvements can be applied to NBS algorithms to reduce the burden of FP referrals without loss of sensitivity.

7.
Brain ; 144(4): 1138-1151, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33822892

ABSTRACT

We studied a subset of patients with autopsy-confirmed multiple system atrophy who presented a clinical picture that closely resembled either Parkinson's disease or progressive supranuclear palsy. These mimics are not captured by the current diagnostic criteria for multiple system atrophy. Among 218 autopsy-proven multiple system atrophy cases reviewed, 177 (81.2%) were clinically diagnosed and pathologically confirmed as multiple system atrophy (i.e. typical cases), while the remaining 41 (18.8%) had received an alternative clinical diagnosis, including Parkinson's disease (i.e. Parkinson's disease mimics; n = 16) and progressive supranuclear palsy (i.e. progressive supranuclear palsy mimics; n = 17). We also reviewed the clinical records of another 105 patients with pathologically confirmed Parkinson's disease or progressive supranuclear palsy, who had received a correct final clinical diagnosis (i.e. Parkinson's disease, n = 35; progressive supranuclear palsy-Richardson syndrome, n = 35; and progressive supranuclear palsy-parkinsonism, n = 35). We investigated 12 red flag features that would support a diagnosis of multiple system atrophy according to the current diagnostic criteria. Compared with typical multiple system atrophy, Parkinson's disease mimics more frequently had a good levodopa response and visual hallucinations. Vertical gaze palsy and apraxia of eyelid opening were more commonly observed in progressive supranuclear palsy mimics. Multiple logistic regression analysis revealed an increased likelihood of having multiple system atrophy [Parkinson's disease mimic versus typical Parkinson's disease, odds ratio (OR): 8.1; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 2.3] if a patient developed any one of seven selected red flag features in the first 10 years of disease. Severe autonomic dysfunction (orthostatic hypotension and/or urinary incontinence with the need for a urinary catheter) was more frequent in clinically atypical multiple system atrophy than other parkinsonian disorders (Parkinson's disease mimic versus typical Parkinson's disease, OR: 4.1; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 8.8). The atypical multiple system atrophy cases more frequently had autonomic dysfunction within 3 years of symptom onset than the pathologically confirmed patients with Parkinson's disease or progressive supranuclear palsy (Parkinson's disease mimic versus typical Parkinson's disease, OR: 4.7; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 2.7). Using all included clinical features and 21 early clinical features within 3 years of symptom onset, we developed decision tree algorithms with combinations of clinical pointers to differentiate clinically atypical cases of multiple system atrophy from Parkinson's disease or progressive supranuclear palsy.


Subject(s)
Multiple System Atrophy/diagnosis , Parkinson Disease/diagnosis , Supranuclear Palsy, Progressive/diagnosis , Aged , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Multiple System Atrophy/pathology , Parkinson Disease/pathology , Supranuclear Palsy, Progressive/pathology
8.
Neurobiol Dis ; 146: 105079, 2020 12.
Article in English | MEDLINE | ID: mdl-32961270

ABSTRACT

Microtubule Associated Protein Tau (MAPT) forms proteopathic aggregates in several diseases. The G273R tau mutation, located in the first repeat region, was found by exome sequencing in a patient who presented with dementia and parkinsonism. We herein return to pathological examination which demonstrated tau immunoreactivity in neurons and glia consistent of mixed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) features. To rationalize the pathological findings, we used molecular biophysics to characterize the mutation in more detail in vitro and in Drosophila. The G273R mutation increases the aggregation propensity of 4-repeat (4R) tau and alters the tau binding affinity towards microtubules (MTs) and F-actin. Tau aggregates in PSP and CBD are predominantly 4R tau. Our data suggest that the G273R mutation induces a shift in pool of 4R tau by lower F-actin affinity, alters the conformation of MT bound 4R tau, while increasing chaperoning of 3R tau by binding stronger to F-actin. The mutation augmented fibrillation of 4R tau initiation in vitro and in glial cells in Drosophila and showed preferential seeding of 4R tau in vitro suggestively causing a late onset 4R tauopathy reminiscent of PSP and CBD.


Subject(s)
Brain/pathology , Neurons/metabolism , Supranuclear Palsy, Progressive/metabolism , Tauopathies/pathology , Animals , Basal Ganglia Diseases/metabolism , Brain/metabolism , Drosophila , Mutation/genetics , Neuroglia/metabolism
9.
Brain ; 143(6): 1798-1810, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32385496

ABSTRACT

Recent post-mortem studies reported 22-37% of patients with multiple system atrophy can develop cognitive impairment. With the aim of identifying associations between cognitive impairment including memory impairment and α-synuclein pathology, 148 consecutive patients with pathologically proven multiple system atrophy were reviewed. Among them, 118 (79.7%) were reported to have had normal cognition in life, whereas the remaining 30 (20.3%) developed cognitive impairment. Twelve of them had pure frontal-subcortical dysfunction, defined as the presence of executive dysfunction, impaired processing speed, personality change, disinhibition or stereotypy; six had pure memory impairment; and 12 had both types of impairment. Semi-quantitative analysis of neuronal cytoplasmic inclusions in the hippocampus and parahippocampus revealed a disease duration-related increase in neuronal cytoplasmic inclusions in the dentate gyrus and cornu ammonis regions 1 and 2 of patients with normal cognition. In contrast, such a correlation with disease duration was not found in patients with cognitive impairment. Compared to the patients with normal cognition, patients with memory impairment (pure memory impairment: n = 6; memory impairment + frontal-subcortical dysfunction: n = 12) had more neuronal cytoplasmic inclusions in the dentate gyrus, cornu ammonis regions 1-4 and entorhinal cortex. In the multiple system atrophy mixed pathological subgroup, which equally affects the striatonigral and olivopontocerebellar systems, patients with the same combination of memory impairment developed more neuronal inclusions in the dentate gyrus, cornu ammonis regions 1, 2 and 4, and the subiculum compared to patients with normal cognition. Using patients with normal cognition (n = 18), frontal-subcortical dysfunction (n = 12) and memory impairment + frontal-subcortical dysfunction (n = 18), we further investigated whether neuronal or glial cytoplasmic inclusions in the prefrontal, temporal and cingulate cortices or the underlying white matter might affect cognitive impairment in patients with multiple system atrophy. We also examined topographic correlates of frontal-subcortical dysfunction with other clinical symptoms. Although no differences in neuronal or glial cytoplasmic inclusions were identified between the groups in the regions examined, frontal release signs were found more commonly when patients developed frontal-subcortical dysfunction, indicating the involvement of the frontal-subcortical circuit in the pathogenesis of frontal-subcortical dysfunction. Here, investigating cognitive impairment in the largest number of pathologically proven multiple system atrophy cases described to date, we provide evidence that neuronal cytoplasmic inclusion burden in the hippocampus and parahippocampus is associated with the occurrence of memory impairment in multiple system atrophy. Further investigation is necessary to identify the underlying pathological basis of frontal-subcortical dysfunction in multiple system atrophy.


Subject(s)
Hippocampus/metabolism , Multiple System Atrophy/physiopathology , alpha-Synuclein/metabolism , Adult , Aged , Bodily Secretions/metabolism , Brain/pathology , Cognition/physiology , Cognitive Dysfunction/etiology , Dementia/complications , Female , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/physiology , Male , Memory , Memory Disorders/complications , Middle Aged , Neurons/metabolism
10.
Acta Neuropathol ; 139(4): 717-734, 2020 04.
Article in English | MEDLINE | ID: mdl-31950334

ABSTRACT

Corticobasal degeneration typically progresses gradually over 5-7 years from onset till death. Fulminant corticobasal degeneration cases with a rapidly progressive course were rarely reported (RP-CBD). This study aimed to investigate their neuropathological characteristics. Of the 124 autopsy-confirmed corticobasal degeneration cases collected from 14 centres, we identified 6 RP-CBD cases (4.8%) who died of advanced disease within 3 years of onset. These RP-CBD cases had different clinical phenotypes including rapid global cognitive decline (N = 2), corticobasal syndrome (N = 2) and Richardson's syndrome (N = 2). We also studied four corticobasal degeneration cases with an average disease duration of 3 years or less, who died of another unrelated illness (Intermediate-CBD). Finally, we selected 12 age-matched corticobasal degeneration cases out of a cohort of 110, who had a typical gradually progressive course and reached advanced clinical stage (End-stage-CBD). Quantitative analysis showed high overall tau burden (p = 0.2) and severe nigral cell loss (p = 0.47) in both the RP-CBD and End-stage-CBD groups consistent with advanced pathological changes, while the Intermediate-CBD group (mean disease duration = 3 years) had milder changes than End-stage-CBD (p < 0.05). These findings indicated that RP-CBD cases had already developed advanced pathological changes as those observed in End-stage-CBD cases (mean disease duration = 6.7 years), but within a significantly shorter duration (2.5 years; p < 0.001). Subgroup analysis was performed to investigate the cellular patterns of tau aggregates in the anterior frontal cortex and caudate by comparing neuronal-to-astrocytic plaque ratios between six RP-CBD cases, four Intermediate-CBD and 12 age-matched End-stage-CBD. Neuronal-to-astrocytic plaque ratios of Intermediate-CBD and End-stage-CBD, but not RP-CBD, positively correlated with disease duration in both the anterior frontal cortex and caudate (p = 0.02). In contrast to the predominance of astrocytic plaques we previously reported in preclinical asymptomatic corticobasal degeneration cases, neuronal tau aggregates predominated in RP-CBD exceeding those in Intermediate-CBD (anterior frontal cortex: p < 0.001, caudate: p = 0.001) and End-stage-CBD (anterior frontal cortex: p = 0.03, caudate: p = 0.01) as demonstrated by its higher neuronal-to-astrocytic plaque ratios in both anterior frontal cortex and caudate. We did not identify any difference in age at onset, any pathogenic tau mutation or concomitant pathologies that could have contributed to the rapid progression of these RP-CBD cases. Mild TDP-43 pathology was observed in three RP-CBD cases. All RP-CBD cases were men. The MAPT H2 haplotype, known to be protective, was identified in one RP-CBD case (17%) and 8 of the matched End-stage-CBD cases (67%). We conclude that RP-CBD is a distinct aggressive variant of corticobasal degeneration with characteristic neuropathological substrates resulting in a fulminant disease process as evident both clinically and pathologically. Biological factors such as genetic modifiers likely play a pivotal role in the RP-CBD variant and should be the subject of future research.


Subject(s)
Basal Ganglia Diseases/pathology , Neurodegenerative Diseases/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Basal Ganglia Diseases/metabolism , Cerebral Cortex/pathology , Disease Progression , Female , Humans , Male , Middle Aged , Neurodegenerative Diseases/metabolism
11.
Acta Neuropathol Commun ; 7(1): 193, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796099

ABSTRACT

Synucleinopathies [Parkinson's disease with or without dementia, dementia with Lewy bodies and multiple system atrophy] are neurodegenerative diseases that are defined by the presence of filamentous α-synuclein inclusions. We investigated the ability of luminescent conjugated oligothiophenes to stain the inclusions of Parkinson's disease and multiple system atrophy. They stained the Lewy pathology of Parkinson's disease and the glial cytoplasmic inclusions of multiple system atrophy. Spectral analysis of HS-68-stained inclusions showed a red shift in multiple system atrophy, but the difference with Parkinson's disease was not significant. However, when inclusions were double-labelled for HS-68 and an antibody specific for α-synuclein phosphorylated at S129, they could be distinguished based on colour shifts with blue designated for Parkinson's disease and red for multiple system atrophy. The inclusions of Parkinson's disease and multiple system atrophy could also be distinguished using fluorescence lifetime imaging. These findings are consistent with the presence of distinct conformers of assembled α-synuclein in Parkinson's disease and multiple system atrophy.


Subject(s)
Fluorescent Dyes/metabolism , Luminescent Measurements/methods , Multiple System Atrophy/metabolism , Parkinson Disease/metabolism , Thiophenes/metabolism , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Diagnosis, Differential , Female , Fluorescent Dyes/analysis , Humans , Male , Middle Aged , Multiple System Atrophy/pathology , Optical Imaging/methods , Parkinson Disease/pathology , Thiophenes/analysis , alpha-Synuclein/analysis
12.
Acta Neuropathol ; 138(5): 795-811, 2019 11.
Article in English | MEDLINE | ID: mdl-31327044

ABSTRACT

Microsatellite repeat expansion disease loci can exhibit pleiotropic clinical and biological effects depending on repeat length. Large expansions in C9orf72 (100s-1000s of units) are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). However, whether intermediate expansions also contribute to neurodegenerative disease is not well understood. Several studies have identified intermediate repeats in Parkinson's disease patients, but the association was not found in autopsy-confirmed cases. We hypothesized that intermediate C9orf72 repeats are a genetic risk factor for corticobasal degeneration (CBD), a neurodegenerative disease that can be clinically similar to Parkinson's but has distinct tau protein pathology. Indeed, intermediate C9orf72 repeats were significantly enriched in autopsy-proven CBD (n = 354 cases, odds ratio = 3.59, p = 0.00024). While large C9orf72 repeat expansions are known to decrease C9orf72 expression, intermediate C9orf72 repeats result in increased C9orf72 expression in human brain tissue and CRISPR/cas9 knockin iPSC-derived neural progenitor cells. In contrast to cases of FTD/ALS with large C9orf72 expansions, CBD with intermediate C9orf72 repeats was not associated with pathologic RNA foci or dipeptide repeat protein aggregates. Knock-in cells with intermediate repeats exhibit numerous changes in gene expression pathways relating to vesicle trafficking and autophagy. Additionally, overexpression of C9orf72 without the repeat expansion leads to defects in autophagy under nutrient starvation conditions. These results raise the possibility that therapeutic strategies to reduce C9orf72 expression may be beneficial for the treatment of CBD.


Subject(s)
Autophagy/genetics , Brain/pathology , C9orf72 Protein/genetics , Neurodegenerative Diseases/genetics , Alzheimer Disease/genetics , Amyotrophic Lateral Sclerosis/pathology , Basal Ganglia Diseases/genetics , Frontotemporal Dementia/genetics , Humans , Parkinson Disease/genetics , Parkinsonian Disorders/genetics
13.
Brain ; 142(9): 2813-2827, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31289815

ABSTRACT

Clinical diagnosis of multiple system atrophy is challenging and many patients with Lewy body disease (i.e. Parkinson's disease or dementia with Lewy bodies) or progressive supranuclear palsy are misdiagnosed as having multiple system atrophy in life. The clinical records of 203 patients with a clinical diagnosis of multiple system atrophy were reviewed to identify diagnostic pitfalls. We also examined 12 features supporting a diagnosis of multiple system atrophy (red flag features: orofacial dystonia, disproportionate antecollis, camptocormia and/or Pisa syndrome, contractures of hands or feet, inspiratory sighs, severe dysphonia, severe dysarthria, snoring, cold hands and feet, pathological laughter and crying, jerky myoclonic postural/action tremor and polyminimyoclonus) and seven disability milestones (frequent falls, use of urinary catheters, wheelchair dependent, unintelligible speech, cognitive impairment, severe dysphagia, residential care). Of 203 cases, 160 (78.8%) were correctly diagnosed in life and had pathologically confirmed multiple system atrophy. The remaining 21.2% (43/203) had alternative pathological diagnoses including Lewy body disease (12.8%; n = 26), progressive supranuclear palsy (6.4%; n = 13), cerebrovascular diseases (1%; n = 2), amyotrophic lateral sclerosis (0.5%; n = 1) and cerebellar degeneration (0.5%; n = 1). More patients with multiple system atrophy developed ataxia, stridor, dysphagia and falls than patients with Lewy body disease; resting tremor, pill-rolling tremor and hallucinations were more frequent in Lewy body disease. Although patients with multiple system atrophy and progressive supranuclear palsy shared several symptoms and signs, ataxia and stridor were more common in multiple system atrophy. Multiple logistic regression analysis revealed increased likelihood of multiple system atrophy versus Lewy body disease and progressive supranuclear palsy if a patient developed orthostatic hypotension or urinary incontinence with the requirement for urinary catheters [multiple system atrophy versus Lewy body disease: odds ratio (OR): 2.0, 95% confidence interval (CI): 1.1-3.7, P = 0.021; multiple system atrophy versus progressive supranuclear palsy: OR: 11.2, 95% CI: 3.2-39.2, P < 0.01]. Furthermore, autonomic dysfunction within the first 3 years from onset can differentiate multiple system atrophy from progressive supranuclear palsy (multiple system atrophy versus progressive supranuclear palsy: OR: 3.4, 95% CI: 1.2-9.7, P = 0.023). Multiple system atrophy patients with predominant parkinsonian signs had a higher number of red flag features than patients with Lewy body disease (OR: 8.8, 95% CI: 3.2-24.2, P < 0.01) and progressive supranuclear palsy (OR: 4.8, 95% CI: 1.7-13.6, P < 0.01). The number of red flag features in multiple system atrophy with predominant cerebellar signs was also higher than in Lewy body disease (OR: 7.0, 95% CI: 2.5-19.5, P < 0.01) and progressive supranuclear palsy (OR: 3.1, 95% CI: 1.1-8.9, P = 0.032). Patients with multiple system atrophy had shorter latency to reach use of urinary catheter and longer latency to residential care than progressive supranuclear palsy patients, whereas patients with Lewy body disease took longer to reach multiple milestones than patients with multiple system atrophy. The present study has highlighted features which should improve the ante-mortem diagnostic accuracy of multiple system atrophy.


Subject(s)
Multiple System Atrophy/pathology , Multiple System Atrophy/physiopathology , Adult , Aged , Aged, 80 and over , Diagnosis, Differential , Female , Humans , Lewy Body Disease/diagnosis , Lewy Body Disease/pathology , Lewy Body Disease/physiopathology , Male , Middle Aged , Multiple System Atrophy/diagnosis , Retrospective Studies , Supranuclear Palsy, Progressive/diagnosis , Supranuclear Palsy, Progressive/pathology , Supranuclear Palsy, Progressive/physiopathology , Tissue Banks/standards
15.
J Neurol Neurosurg Psychiatry ; 90(5): 555-561, 2019 05.
Article in English | MEDLINE | ID: mdl-30598430

ABSTRACT

BACKGROUND: Development of autonomic failure is associated with more rapid disease course and shorter survival in patients with Parkinson's disease and multiple system atrophy. However, autonomic symptoms have not been specifically assessed as a prognostic factor in progressive supranuclear palsy (PSP). We evaluated whether development of autonomic symptoms is associated with disease progression and survival in PSP. METHODS: A retrospective review of clinical data from consecutive patients with autopsy-confirmed PSP from the Queen Square Brain Bank between January 2012 and November 2016 was performed. Time from disease onset to four autonomic symptoms (constipation, urinary symptoms, erectile dysfunction and orthostatic hypotension) were noted. Time from diagnosis to five disease milestones and survival were calculated to assess disease progression, and their risk was estimated through a Cox proportional hazards model. RESULTS: A total of 103 PSP patients were included. Urinary symptoms and constipation were present in 81% and 71% of cases, respectively. Early development of constipation and urinary symptoms were associated with higher risk of reaching the first disease milestone (respectively, HR: 0.88; 95% CI 0.83 to 0.92; p<0.001; and HR: 0.80; 95% CI 0.75 to 0.86; p<0.001) and with a shorter survival in these patients (respectively, HR: 0.73; 95% CI 0.64 to 0.84; p<0.001; and HR: 0.88; 95% CI 0.80 to 0.96; p=0.004). On multivariate analysis, Richardson syndrome phenotype was the other variable independently associated with shorter survival. CONCLUSIONS: Earlier urinary symptoms and constipation are associated with a more rapid disease progression and reduced survival in patients with PSP.


Subject(s)
Constipation/etiology , Erectile Dysfunction/etiology , Hypotension, Orthostatic/etiology , Supranuclear Palsy, Progressive/complications , Supranuclear Palsy, Progressive/mortality , Urination Disorders/etiology , Aged , Aged, 80 and over , Disease Progression , Female , Humans , Male , Middle Aged , Retrospective Studies , Supranuclear Palsy, Progressive/diagnosis , Survival Rate , Symptom Assessment
19.
Mov Disord ; 33(7): 1099-1107, 2018 07.
Article in English | MEDLINE | ID: mdl-30153390

ABSTRACT

BACKGROUND: The onset of multiple system atrophy (MSA) before age 40 years is referred to as "young-onset MSA." We identified clinical and pathological characteristics that might help with its early diagnosis and distinction from young-onset Parkinson's disease and late-onset MSA. METHODS: We reviewed the available clinical and pathological features in cases that fulfilled consensus criteria for diagnosis of probable MSA or had autopsy confirmed MSA with an onset before age 40 years and compared the clinical features with 16 autopsy confirmed cases with young-onset Parkinson's disease and a large published series of late-onset MSA from the European MSA Study Group. RESULTS: We identified 22 patients with young-onset MSA, 8 of whom had available pathology. The mean age of onset was 36.7 years (standard deviation 2.3). Levodopa-induced dyskinesia was more common, whereas myoclonus and pyramidal signs were less common in young-onset Parkinson's disease when compared with young-onset MSA. Dystonia, levodopa responsiveness, levodopa-induced dyskinesia, and pyramidal signs were more common (P < .05) when compared with the data in late-onset MSA. On postmortem analysis, the minimal-change pathological variant was more common in young-onset MSA (n = 2) than late-onset MSA (P = .045), with a mean survival of 11.1 ± 3.2 years (range 5.5-14.6) in pathologically confirmed cases of young-onset MSA. CONCLUSION: This study has identified useful differences that may improve diagnostic accuracy, help us understand the pathological basis, and assist clinicians with the early diagnosis of young-onset MSA. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Adult , Age of Onset , Cohort Studies , Dopamine Agents/therapeutic use , Female , Genetic Testing , Humans , Levodopa/therapeutic use , Male , Middle Aged , Multiple System Atrophy/diagnosis , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Multiple System Atrophy/therapy
20.
Brain ; 141(8): 2419-2431, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29917054

ABSTRACT

The α-synuclein protein, encoded by SNCA, has a key role in the pathogenesis of Parkinson's disease and other synucleinopathies. Although usually sporadic, Parkinson's disease can result from inherited copy number variants in SNCA and other genes. We have hypothesized a role of somatic SNCA mutations, leading to mosaicism, in sporadic synucleinopathies. The evidence for mosaicism in healthy and diseased brain is increasing rapidly, with somatic copy number gains of APP reported in Alzheimer's brain. Here we demonstrate somatic SNCA copy number gains in synucleinopathies (Parkinson's disease and multiple system atrophy), focusing on substantia nigra. We selected sporadic cases with relatively young onset or short disease duration, and first excluded high level copy number variant mosaicism by DNA analysis using digital PCR for SNCA, and/or customized array comparative genomic hybridization. To detect low level SNCA copy number variant mosaicism, we used fluorescent in situ hybridization with oligonucleotide custom-designed probes for SNCA, validated on brain and fibroblasts with known copy number variants. We determined SNCA copy number in nigral dopaminergic neurons and other cells in frozen nigra sections from 40 cases with Parkinson's disease and five with multiple system atrophy, and 25 controls, in a blinded fashion. Parkinson's disease cases were significantly more likely than controls to have any SNCA gains in dopaminergic neurons (P = 0.0036), and overall (P = 0.0052). The average proportion of dopaminergic neurons with gains in each nigra was significantly higher in Parkinson's disease than controls (0.78% versus 0.45%; P = 0.017). There was a negative correlation between the proportion of dopaminergic neurons with gains and onset age in Parkinson's disease (P = 0.013), but not with disease duration, or age of death in cases or controls. Cases with tremor at onset were less likely to have gains (P = 0.035). All multiple system atrophy cases had gains, and the highest levels in dopaminergic neurons were in two of these cases (2.76%, 2.48%). We performed selective validation with different probes after dye swapping. All three control probes used showed minimal or no gains (≤0.1% in dopaminergic neurons). We also found occasional SNCA gains in frontal neurons of cases with Parkinson's disease, and the putamen of one multiple system atrophy case. We present evidence of somatic SNCA gains in brain, more commonly in nigral dopaminergic neurons of Parkinson's disease than controls, negatively correlated with onset age, and possibly commonest in some multiple system atrophy cases. Somatic SNCA gains may be a risk factor for sporadic synucleinopathies, or a result of the disease process.10.1093/brain/awy157_video1awy157media15813519976001.


Subject(s)
Multiple System Atrophy/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Aged , Brain/physiopathology , Comparative Genomic Hybridization/methods , DNA Copy Number Variations/genetics , Dopaminergic Neurons/physiology , Female , Gene Expression/genetics , Humans , In Situ Hybridization, Fluorescence/methods , Male , Multiple System Atrophy/metabolism , Parkinson Disease/metabolism , Substantia Nigra/physiopathology , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...