Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
PeerJ ; 9: e11334, 2021.
Article in English | MEDLINE | ID: mdl-33996282

ABSTRACT

BACKGROUND: Climate change is an important factor driving vegetation changes in arid areas. Identifying the sensitivity of vegetation to climate variability is crucial for developing sustainable ecosystem management strategies. The Irtysh River is located in the westerly partition of China, and its vegetation cover is more sensitive to climate change. However, previous studies rarely studied the changes in the vegetation coverage of the Irtysh River and its sensitivity to climate factors from a spatiotemporal perspective. METHODS: We adopted a vegetation sensitivity index based on remote sensing datasets of high temporal resolution to study the sensitivity of vegetation to climatic factors in the Irtysh River basin, then reveal the driving mechanism of vegetation cover change. RESULTS: The results show that 88.09% of vegetated pixels show an increasing trend in vegetation coverage, and the sensitivity of vegetation to climate change presents spatial heterogeneity. Sensitivity of vegetation increases with the increase of coverage. Temperate steppe in the northern mountain and herbaceous swamp and broadleaf forest in the river valley, where the normalized difference vegetation index is the highest, show the strongest sensitivity, while the desert steppe in the northern plain, where the NDVI is the lowest, shows the strongest memory effect (or the strongest resilience). Relatively, the northern part of this area is more affected by a combination of precipitation and temperature, while the southern plains dominated by desert steppe are more sensitive to precipitation. The central river valley dominated by herbaceous swamp is more sensitive to temperature-vegetation dryness index. This study underscores that the sensitivity of vegetation cover to climate change is spatially differentiated at the regional scale.

2.
Ecol Evol ; 10(13): 6636-6645, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724538

ABSTRACT

Aridity and salinity have a key role in driving physiological and ecological processes in desert ecosystems. However, how community-scale foliar nutrients respond to aridity and salinity, and how these responses might vary with community composition along aridity and salinity gradients is unclear. We hypothesize that the response will be a shift in community stoichiometric values resulting from nutrient variability of shared species and unique species (site-specific species), but little research has addressed the relative contribution of either component.We analyzed the community-scale stoichiometric response of a desert community of perennial plants along an aridity and salinity transect by focusing on foliar nitrogen (N) and phosphorous (P) concentrations and N:P ratios. After evaluating the shared and unique species variability, we determined their relative contribution to the community stoichiometric response to aridity and salinity, reflected by changes in nonweighted and weighted community-average values.Community-scale stoichiometry decreased significantly under aridity and salinity, with significantly consistent changes in nonweighted and weighted community-average stoichiometry for most shared and unique species measurements. The relative contribution of unique species shifts to the changes in community stoichiometry was greater (15%-77%) than the relative contribution of shared species shifts (7%-45%), excluding the change in weighted P concentration under aridity. Thus, the shifts of unique species amplified the community stoichiometric response to environmental changes. Synthesis. These results highlighted the need for a more in-depth consideration of shared and unique species variability to understand and predict the effects of environmental change on the stoichiometry of plant communities. Although variation in community stoichiometry can be expected under extreme aridity and salinity conditions, changes of unique species could be a more important driver of the stoichiometric response of plant communities.

3.
Ying Yong Sheng Tai Xue Bao ; 20(9): 2219-24, 2009 Sep.
Article in Chinese | MEDLINE | ID: mdl-20030146

ABSTRACT

By using analytic hierarchy process and fuzzy comprehensive evaluation, an index system for ecological safety assessment was built, and 18 indices in the aspects of water resource, environment, and social economy were selected to assess the ecological safety of Manas River Basin oasis in 2006. In the study area, the ecological situation in 2006 was basically safe, with the membership degree being 0. 3347 and the integrated evaluation score being 0. 551. The water resource safety index, social economy index, and environmental safety index were in the levels of relatively safe, extremely safe, and unsafe, respectively. Water resource index could represent the sustainable development degree of oasis, while social economy index and environment safety index could indicate the oasis development level and environment situation, respectively. These three indices could most reflect the ecological safety level of the oasis.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Pollution/analysis , Rivers , China , Evaluation Studies as Topic , Risk Assessment , Safety , Socioeconomic Factors
4.
J Microbiol Biotechnol ; 18(3): 397-403, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18388454

ABSTRACT

Nikkomycins are a group of peptidyl nucleoside antibiotics with potent fungicidal, insecticidal, and acaricidal activities. sanN was cloned from the partial genomic library of Streptomyces ansochromogenes 7100. Gene disruption and complementation analysis demonstrated that sanN is essential for nikkomycin biosynthesis in S. ansochromogenes. Primer extension assay indicated that sanN is transcribed from two promoters (sanN-P1 and sanN-P2), and sanN-P2 plays a more important role in nikkomycin biosynthesis. Purified recombinant SanN acts as a dehydrogenase to convert benzoate-CoA to benzaldehyde in a random-order mechanism in vitro, with respective Kcat/Km values of 3.8 mM-1s-1 and 12.0 mM-1s-1 toward benzoate-CoA and NADH, suggesting that SanN catalyzes the formation of picolinaldehyde during biosynthesis of nikkomycin X and Z components in the wild-type stain. These data would facilitate us to understand the biosynthetic pathway of nikkomycins and to consider the combinatorial synthesis of novel antibiotic derivatives.


Subject(s)
Aminoglycosides/biosynthesis , Anti-Bacterial Agents/biosynthesis , Oxidoreductases/metabolism , Streptomyces/enzymology , Aminoglycosides/analysis , Anti-Bacterial Agents/analysis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Biosynthetic Pathways , China , Cloning, Molecular , Gene Expression , Genetic Complementation Test , Kinetics , Molecular Sequence Data , Oxidoreductases/chemistry , Oxidoreductases/genetics , Sequence Analysis, DNA , Soil Microbiology , Streptomyces/genetics , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...