Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4192, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760350

ABSTRACT

Optical microcomb underpins a wide range of applications from communication, metrology, to sensing. Although extensively explored in recent years, challenges remain in key aspects of microcomb such as complex soliton initialization, low power efficiency, and limited comb reconfigurability. Here we present an on-chip microcomb laser to address these key challenges. Realized with integration between III and V gain chip and a thin-film lithium niobate (TFLN) photonic integrated circuit (PIC), the laser directly emits mode-locked microcomb on demand with robust turnkey operation inherently built in, with individual comb linewidth down to 600 Hz, whole-comb frequency tuning rate exceeding 2.4 × 1017 Hz/s, and 100% utilization of optical power fully contributing to comb generation. The demonstrated approach unifies architecture and operation simplicity, electro-optic reconfigurability, high-speed tunability, and multifunctional capability enabled by TFLN PIC, opening up a great avenue towards on-demand generation of mode-locked microcomb that is of great potential for broad applications.

2.
Nat Commun ; 14(1): 3467, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308507

ABSTRACT

Soliton microcombs are a promising new approach for photonic-based microwave signal synthesis. To date, however, the tuning rate has been limited in microcombs. Here, we demonstrate the first microwave-rate soliton microcomb whose repetition rate can be tuned at a high speed. By integrating an electro-optic modulation element into a lithium niobate comb microresonator, a modulation bandwidth up to 75 MHz and a continuous frequency modulation rate up to 5.0 × 1014 Hz/s are achieved, several orders-of-magnitude faster than existing microcomb technology. The device offers a significant bandwidth of up to tens of gigahertz for locking the repetition rate to an external microwave reference, enabling both direct injection locking and feedback locking to the comb resonator itself without involving external modulation. These features are especially useful for disciplining an optical voltage-controlled oscillator to a long-term reference and the demonstrated fast repetition rate control is expected to have a profound impact on all applications of frequency combs.

3.
Nat Commun ; 13(1): 5344, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36097269

ABSTRACT

The development of integrated semiconductor lasers has miniaturized traditional bulky laser systems, enabling a wide range of photonic applications. A progression from pure III-V based lasers to III-V/external cavity structures has harnessed low-loss waveguides in different material systems, leading to significant improvements in laser coherence and stability. Despite these successes, however, key functions remain absent. In this work, we address a critical missing function by integrating the Pockels effect into a semiconductor laser. Using a hybrid integrated III-V/Lithium Niobate structure, we demonstrate several essential capabilities that have not existed in previous integrated lasers. These include a record-high frequency modulation speed of 2 exahertz/s (2.0 × 1018 Hz/s) and fast switching at 50 MHz, both of which are made possible by integration of the electro-optic effect. Moreover, the device co-lases at infrared and visible frequencies via the second-harmonic frequency conversion process, the first such integrated multi-color laser. Combined with its narrow linewidth and wide tunability, this new type of integrated laser holds promise for many applications including LiDAR, microwave photonics, atomic physics, and AR/VR.

4.
Phys Rev Lett ; 127(18): 183601, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34767430

ABSTRACT

The development of quantum technologies on nanophotonic platforms has seen momentous progress in the past decade. Despite that, a demonstration of time-frequency entanglement over a broad spectral width is still lacking. Here we present an efficient source of ultrabroadband entangled photon pairs on a periodically poled lithium niobate nanophotonic waveguide. Employing dispersion engineering, we demonstrate a record-high 100 THz (1.2 µm-2 µm) generation bandwidth with a high efficiency of 13 GHz/mW and excellent noise performance with the coincidence-to-accidental ratio exceeding 10^{5}. We also measure strong time-frequency entanglement with over 98% two-photon interference visibility.

5.
Nat Commun ; 11(1): 4123, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32807775

ABSTRACT

Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metrics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here, we make an important step towards miniaturizing functional components on this platform, reporting high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz V-1, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58 µm3. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb s-1 with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics.

6.
Opt Express ; 28(15): 21682-21691, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752441

ABSTRACT

Lithium niobate (LN), possessing wide transparent window, strong electro-optic effect, and large optical nonlinearity, is an ideal material platform for integrated photonics application. Microring resonators are particularly suitable as integrated photonic components, given their flexibility of device engineering and their potential for large-scale integration. However, the susceptibility to temperature fluctuation has become a major challenge for their implementation in a practical environment. Here, we demonstrate an athermal LN microring resonator. By cladding an x-cut LN microring resonator with a thin layer of titanium oxide, we are able to completely eliminate the first-order thermo-optic coefficient (TOC) of cavity resonance right at room temperature (20°C), leaving only a small residual quadratic temperature dependence with a second-order TOC of only 0.37 pm/K2. It corresponds to a temperature-induced resonance wavelength shift within 0.33 nm over a large operating temperature range of (-10 - 50)°C that is one order of magnitude smaller than a bare LN microring resonator. Moreover, the TiO2-cladded LN microring resonator is able to preserve high optical quality, with an intrinsic optical Q of 5.8 × 105 that is only about 11% smaller than that of a bare LN resonator. The flexibility of thermo-optic engineering, high optical quality, and device fabrication compatibility show great promise of athermal LN/TiO2 hybrid devices for practical applications, elevating the potential importance of LN photonic integrated circuits for future communication, sensing, nonlinear and quantum photonics.

7.
Opt Express ; 28(13): 19669-19682, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672239

ABSTRACT

High-fidelity periodic poling over long lengths is required for robust, quasi-phase-matched second-harmonic generation using the fundamental, quasi-TE polarized waveguide modes in a thin-film lithium niobate (TFLN) waveguide. Here, a shallow-etched ridge waveguide is fabricated in x-cut magnesium oxide doped TFLN and is poled accurately over 5 mm. The high fidelity of the poling is demonstrated over long lengths using a non-destructive technique of confocal scanning second-harmonic microscopy. We report a second-harmonic conversion efficiency of up to 939 %.W-1 (length-normalized conversion efficiency 3757 %.W-1.cm-2), measured at telecommunications wavelengths. The device demonstrates a narrow spectral linewidth (1 nm) and can be tuned precisely with a tuning characteristic of 0.1 nm/°C, over at least 40 °C without measurable loss of efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...