Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Neuroimage ; 290: 120575, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38479461

ABSTRACT

Investigation of neural mechanisms of real-time functional MRI neurofeedback (rtfMRI-nf) training requires an efficient study control approach. A common rtfMRI-nf study design involves an experimental group, receiving active rtfMRI-nf, and a control group, provided with sham rtfMRI-nf. We report the first study in which rtfMRI-nf procedure is controlled through counterbalancing training runs with active and sham rtfMRI-nf for each participant. Healthy volunteers (n = 18) used rtfMRI-nf to upregulate fMRI activity of an individually defined target region in the left dorsolateral prefrontal cortex (DLPFC) while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. Sham rtfMRI-nf was provided based on fMRI activity of a different brain region, not involved in these tasks. The experimental procedure included two training runs with the active rtfMRI-nf and two runs with the sham rtfMRI-nf, in a randomized order. The participants achieved significantly higher fMRI activation of the left DLPFC target region during the active rtfMRI-nf conditions compared to the sham rtfMRI-nf conditions. fMRI functional connectivity of the left DLPFC target region with the nodes of the central executive network was significantly enhanced during the active rtfMRI-nf conditions relative to the sham conditions. fMRI connectivity of the target region with the nodes of the default mode network was similarly enhanced. fMRI connectivity changes between the active and sham conditions exhibited meaningful associations with individual performance measures on the Working Memory Multimodal Attention Task, the Approach-Avoidance Task, and the Trail Making Test. Our results demonstrate that the counterbalanced active-sham study design can be efficiently used to investigate mechanisms of active rtfMRI-nf in direct comparison to those of sham rtfMRI-nf. Further studies with larger group sizes are needed to confirm the reported findings and evaluate clinical utility of this study control approach.


Subject(s)
Neurofeedback , Humans , Neurofeedback/methods , Magnetic Resonance Imaging/methods , Cognitive Training , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods
2.
Neuroimage ; 285: 120470, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016527

ABSTRACT

Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.


Subject(s)
Brain Concussion , Brain Injuries , Humans , Child , Brain Concussion/diagnostic imaging , Nerve Net/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging
3.
Hum Brain Mapp ; 44(17): 6173-6184, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37800467

ABSTRACT

There is a growing body of research showing that cerebral pathophysiological processes triggered by pediatric mild traumatic brain injury (pmTBI) may extend beyond the usual clinical recovery timeline. It is paramount to further unravel these processes, because the possible long-term cognitive effects resulting from ongoing secondary injury in the developing brain are not known. In the current fMRI study, neural processes related to cognitive control were studied in 181 patients with pmTBI at sub-acute (SA; ~1 week) and early chronic (EC; ~4 months) stages post-injury. Additionally, a group of 162 age- and sex-matched healthy controls (HC) were recruited at equivalent time points. Proactive (post-cue) and reactive (post-probe) cognitive control were examined using a multimodal attention fMRI paradigm for either congruent or incongruent stimuli. To study brain network function, the triple-network model was used, consisting of the executive and salience networks (collectively known as the cognitive control network), and the default mode network. Additionally, whole-brain voxel-wise analyses were performed. Decreased deactivation was found within the default mode network at the EC stage following pmTBI during both proactive and reactive control. Voxel-wise analyses revealed sub-acute hypoactivation of a frontal area of the cognitive control network (left pre-supplementary motor area) during proactive control, with a reversed effect at the EC stage after pmTBI. Similar effects were observed in areas outside of the triple-network during reactive control. Group differences in activation during proactive control were limited to the visual domain, whereas for reactive control findings were more pronounced during the attendance of auditory stimuli. No significant correlations were present between task-related activations and (persistent) post-concussive symptoms. In aggregate, current results show alterations in neural functioning during cognitive control in pmTBI up to 4 months post-injury, regardless of clinical recovery. We propose that subacute decreases in activity reflect a general state of hypo-excitability due to the injury, while early chronic hyperactivation represents a compensatory mechanism to prevent default mode interference and to retain cognitive control.


Subject(s)
Brain Concussion , Cognition Disorders , Cognitive Dysfunction , Humans , Child , Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Cognition Disorders/etiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Magnetic Resonance Imaging , Cognition
4.
J Neurol ; 270(12): 5835-5848, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37594499

ABSTRACT

OBJECTIVE: Brain age is increasingly being applied to the spectrum of brain injury to define neuropathological changes in conjunction with blood-based biomarkers. However, data from the acute/sub-acute stages of concussion are lacking, especially among younger cohorts. METHODS: Predicted brain age differences were independently calculated in large, prospectively recruited cohorts of pediatric concussion and matched healthy controls (total N = 446), as well as collegiate athletes with sport-related concussion and matched non-contact sport controls (total N = 184). Effects of repetitive head injury (i.e., exposure) were examined in a separate cohort of contact sport athletes (N = 82), as well as by quantifying concussion history through semi-structured interviews and years of contact sport participation. RESULTS: Findings of increased brain age during acute and sub-acute concussion were independently replicated across both cohorts, with stronger evidence of recovery for pediatric (4 months) relative to concussed athletes (6 months). Mixed evidence existed for effects of repetitive head injury, as brain age was increased in contact sport athletes, but was not associated with concussion history or years of contact sport exposure. There was no difference in brain age between concussed and contact sport athletes. Total tau decreased immediately (~ 1.5 days) post-concussion relative to the non-contact group, whereas pro-inflammatory markers were increased in both concussed and contact sport athletes. Anti-inflammatory markers were inversely related to brain age, whereas markers of axonal injury (neurofilament light) exhibited a trend positive association. CONCLUSION: Current and previous findings collectively suggest that the chronicity of brain age differences may be mediated by age at injury (adults > children), with preliminary findings suggesting that exposure to contact sports may also increase brain age.


Subject(s)
Athletic Injuries , Brain Concussion , Adult , Humans , Child , Infant , Athletic Injuries/complications , Brain Concussion/diagnosis , Brain/diagnostic imaging , Head , Biomarkers , Athletes
5.
J Neurotrauma ; 40(19-20): 2205-2216, 2023 10.
Article in English | MEDLINE | ID: mdl-37341029

ABSTRACT

Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) are each leading causes of mortality and morbidity worldwide, and present additional treatment considerations when they are comorbid (TBI+HS) as a result of competing pathophysiological responses. The current study rigorously quantified injury biomechanics with high precision sensors and examined whether blood-based surrogate markers were altered in general trauma as well as post-neurotrauma. Eighty-nine sexually mature male and female Yucatan swine were subjected to a closed-head TBI+HS (40% of circulating blood volume; n = 68), HS only (n = 9), or sham trauma (n = 12). Markers of systemic (e.g., glucose, lactate) and neural functioning were obtained at baseline, and at 35 and 295 min post-trauma. Opposite and approximately twofold differences existed for both magnitude (device > head) and duration (head > device) of quantified injury biomechanics. Circulating levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase L1 (UCH-L1) demonstrated differential sensitivity for both general trauma (HS) and neurotrauma (TBI+HS) relative to shams in a temporally dynamic fashion. GFAP and NfL were both strongly associated with changes in systemic markers during general trauma and exhibited consistent time-dependent changes in individual sham animals. Finally, circulating GFAP was associated with histopathological markers of diffuse axonal injury and blood-brain barrier breach, as well as variations in device kinematics following TBI+HS. Current findings therefore highlight the need to directly quantify injury biomechanics with head mounted sensors and suggest that GFAP, NfL, and UCH-L1 are sensitive to multiple forms of trauma rather than having a single pathological indication (e.g., GFAP = astrogliosis).


Subject(s)
Brain Injuries, Traumatic , Shock, Hemorrhagic , Male , Female , Swine , Animals , Biomechanical Phenomena , Biomarkers , Models, Animal , Glial Fibrillary Acidic Protein , Ubiquitin Thiolesterase
6.
Neurology ; 100(5): e516-e527, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36522161

ABSTRACT

BACKGROUND AND OBJECTIVES: The clinical and physiologic time course for recovery following pediatric mild traumatic brain injury (pmTBI) remains actively debated. The primary objective of the current study was to prospectively examine structural brain changes (cortical thickness and subcortical volumes) and age-at-injury effects. A priori study hypotheses predicted reduced cortical thickness and hippocampal volumes up to 4 months postinjury, which would be inversely associated with age at injury. METHODS: Prospective cohort study design with consecutive recruitment. Study inclusion adapted from American Congress of Rehabilitation Medicine (upper threshold) and Zurich Concussion in Sport Group (minimal threshold) and diagnosed by Emergency Department and Urgent Care clinicians. Major neurologic, psychiatric, or developmental disorders were exclusionary. Clinical (Common Data Element) and structural (3 T MRI) evaluations within 11 days (subacute visit [SA]) and at 4 months (early chronic visit [EC]) postinjury. Age- and sex-matched healthy controls (HC) to control for repeat testing/neurodevelopment. Clinical outcomes based on self-report and cognitive testing. Structural images quantified with FreeSurfer (version 7.1.1). RESULTS: A total of 208 patients with pmTBI (age = 14.4 ± 2.9; 40.4% female) and 176 HC (age = 14.2 ± 2.9; 42.0% female) were included in the final analyses (>80% retention). Reduced cortical thickness (right rostral middle frontal gyrus; d = -0.49) and hippocampal volumes (d = -0.24) observed for pmTBI, but not associated with age at injury. Hippocampal volume recovery was mediated by loss of consciousness/posttraumatic amnesia. Significantly greater postconcussive symptoms and cognitive deficits were observed at SA and EC visits, but were not associated with the structural abnormalities. Structural abnormalities slightly improved balanced classification accuracy above and beyond clinical gold standards (∆+3.9%), with a greater increase in specificity (∆+7.5%) relative to sensitivity (∆+0.3%). DISCUSSION: Current findings indicate that structural brain abnormalities may persist up to 4 months post-pmTBI and are partially mediated by initial markers of injury severity. These results contribute to a growing body of evidence suggesting prolonged physiologic recovery post-pmTBI. In contrast, there was no evidence for age-at-injury effects or physiologic correlates of persistent symptoms in our sample.


Subject(s)
Brain Concussion , Chronic Traumatic Encephalopathy , Post-Concussion Syndrome , Humans , Female , Child , Adolescent , Male , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Prospective Studies , Gray Matter/diagnostic imaging , Post-Concussion Syndrome/diagnosis , Atrophy
7.
Brain ; 145(11): 4124-4137, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35727944

ABSTRACT

The underlying pathophysiology of paediatric mild traumatic brain injury and the time-course for biological recovery remains widely debated, with clinical care principally informed by subjective self-report. Similarly, clinical evidence indicates that adolescence is a risk factor for prolonged recovery, but the impact of age-at-injury on biomarkers has not been determined in large, homogeneous samples. The current study collected diffusion MRI data in consecutively recruited patients (n = 203; 8-18 years old) and age and sex-matched healthy controls (n = 170) in a prospective cohort design. Patients were evaluated subacutely (1-11 days post-injury) as well as at 4 months post-injury (early chronic phase). Healthy participants were evaluated at similar times to control for neurodevelopment and practice effects. Clinical findings indicated persistent symptoms at 4 months for a significant minority of patients (22%), along with residual executive dysfunction and verbal memory deficits. Results indicated increased fractional anisotropy and reduced mean diffusivity for patients, with abnormalities persisting up to 4 months post-injury. Multicompartmental geometric models indicated that estimates of intracellular volume fractions were increased in patients, whereas estimates of free water fractions were decreased. Critically, unique areas of white matter pathology (increased free water fractions or increased neurite dispersion) were observed when standard assumptions regarding parallel diffusivity were altered in multicompartmental models to be more biologically plausible. Cross-validation analyses indicated that some diffusion findings were more reproducible when ∼70% of the total sample (142 patients, 119 controls) were used in analyses, highlighting the need for large-sample sizes to detect abnormalities. Supervised machine learning approaches (random forests) indicated that diffusion abnormalities increased overall diagnostic accuracy (patients versus controls) by ∼10% after controlling for current clinical gold standards, with each diffusion metric accounting for only a few unique percentage points. In summary, current results suggest that novel multicompartmental models are more sensitive to paediatric mild traumatic brain injury pathology, and that this sensitivity is increased when using parameters that more accurately reflect diffusion in healthy tissue. Results also indicate that diffusion data may be insufficient to achieve a high degree of objective diagnostic accuracy in patients when used in isolation, which is to be expected given known heterogeneities in pathophysiology, mechanism of injury and even criteria for diagnoses. Finally, current results indicate ongoing clinical and physiological recovery at 4 months post-injury.


Subject(s)
Brain Concussion , White Matter , Adolescent , Humans , Child , Brain Concussion/pathology , Prospective Studies , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Magnetic Resonance Imaging/methods , Water , Brain/pathology
8.
Ann Biomed Eng ; 50(6): 728-739, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35366746

ABSTRACT

Accurate characterization of head kinematics following an external blow represents a fundamental aspect of traumatic brain injury (TBI) research. The majority of previous large animal studies have assumed an equivalent relationship between the device delivering the impulsive load and subsequent head kinematics rather than performing direct measurement (sensors or videography). The current study therefore examined factors affecting device/head coupling kinematics in an acceleration TBI model. Experiment 1 indicated ~ 50% reduction in peak angular velocity for swine head relative to the device, with an approximate doubling in temporal duration. The peak angular velocity for the head was not significantly altered by variations in restraint device (straps vs. cables), animal positioning or body mass. In Experiment 2, reducing the impulsive load by 32% resulted in only a 14% reduction in angular velocity of the head (approximately 69% head/device coupling ratio), with more pronounced differences qualitatively observed for angular momentum. A temporal delay was identified in initial device/head coupling, potentially a result of soft tissue deformation. Finally, similar head kinematics were obtained regardless of mounting the sensor directly to the skull or through the scalp (Experiment 3). Current findings highlight the importance of direct measurement of head kinematics for future studies.


Subject(s)
Acceleration , Brain Injuries, Traumatic , Animals , Biomechanical Phenomena , Head , Swine
9.
Crit Care ; 25(1): 428, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34915927

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) represent leading causes of trauma-induced mortality, especially when co-occurring in pre-hospital settings where standard therapies are not readily available. The primary objective of this study was to determine if 17α-ethinyl estradiol-3-sulfate (EE-3-SO4) increases survival, promotes more rapid cardiovascular recovery, or confers neuroprotection relative to Placebo following TBI + HS. METHODS: All methods were approved by required regulatory agencies prior to study initiation. In this fully randomized, blinded preclinical study, eighty (50% females) sexually mature (190.64 ± 21.04 days old; 28.18 ± 2.72 kg) Yucatan swine were used. Sixty-eight animals received a closed-head, accelerative TBI followed by removal of approximately 40% of circulating blood volume. Animals were then intravenously administered EE-3-SO4 formulated in the vehicle at 5.0 mg/mL (dosed at 0.2 mL/kg) or Placebo (0.45% sodium chloride solution) via a continuous pump (0.2 mL/kg over 5 min). Twelve swine were included as uninjured Shams to further characterize model pathology and replicate previous findings. All animals were monitored for up to 5 h in the absence of any other life-saving measures (e.g., mechanical ventilation, fluid resuscitation). RESULTS: A comparison of Placebo-treated relative to Sham animals indicated evidence of acidosis, decreased arterial pressure, increased heart rate, diffuse axonal injury and blood-brain barrier breach. The percentage of animals surviving to 295 min post-injury was significantly higher for the EE-3-SO4 (28/31; 90.3%) relative to Placebo (24/33; 72.7%) cohort. EE-3-SO4 also restored pulse pressure more rapidly post-drug administration, but did not confer any benefits in terms of shock index. Primary blood-based measurements of neuroinflammation and blood brain breach were also null, whereas secondary measurements of diffuse axonal injury suggested a more rapid return to baseline for the EE-3-SO4 group. Survival status was associated with biological sex (female > male), as well as evidence of increased acidosis and neurotrauma independent of EE-3-SO4 or Placebo administration. CONCLUSIONS: EE-3-SO4 is efficacious in promoting survival and more rapidly restoring cardiovascular homeostasis following polytraumatic injuries in pre-hospital environments (rural and military) in the absence of standard therapies. Poly-therapeutic approaches targeting additional mechanisms (increased hemostasis, oxygen-carrying capacity, etc.) should be considered in future studies.


Subject(s)
Brain Injuries, Traumatic , Shock, Hemorrhagic , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Disease Models, Animal , Estradiol/analogs & derivatives , Female , Hemodynamics , Male , Neuroinflammatory Diseases , Resuscitation , Shock, Hemorrhagic/drug therapy , Swine
10.
Front Neurol ; 12: 658461, 2021.
Article in English | MEDLINE | ID: mdl-34177763

ABSTRACT

Acceleration parameters have been utilized for the last six decades to investigate pathology in both human and animal models of traumatic brain injury (TBI), design safety equipment, and develop injury thresholds. Previous large animal models have quantified acceleration from impulsive loading forces (i.e., machine/object kinematics) rather than directly measuring head kinematics. No study has evaluated the reproducibility of head kinematics in large animal models. Nine (five males) sexually mature Yucatan swine were exposed to head rotation at a targeted peak angular velocity of 250 rad/s in the coronal plane. The results indicated that the measured peak angular velocity of the skull was 51% of the impulsive load, was experienced over 91% longer duration, and was multi- rather than uni-planar. These findings were replicated in a second experiment with a smaller cohort (N = 4). The reproducibility of skull kinematics data was mostly within acceptable ranges based on published industry standards, although the coefficients of variation (8.9% for peak angular velocity or 12.3% for duration) were higher than the impulsive loading parameters produced by the machine (1.1 vs. 2.5%, respectively). Immunohistochemical markers of diffuse axonal injury and blood-brain barrier breach were not associated with variation in either skull or machine kinematics, suggesting that the observed levels of variance in skull kinematics may not be biologically meaningful with the current sample sizes. The findings highlight the reproducibility of a large animal acceleration model of TBI and the importance of direct measurements of skull kinematics to determine the magnitude of angular velocity, refine injury criteria, and determine critical thresholds.

11.
Schizophr Res ; 229: 12-21, 2021 03.
Article in English | MEDLINE | ID: mdl-33607607

ABSTRACT

Patients with psychotic spectrum disorders (PSD) exhibit similar patterns of atrophy and microstructural changes that may be associated with common symptomatology (e.g., symptom burden and/or cognitive impairment). Gray matter concentration values (proxy for atrophy), fractional anisotropy (FA), mean diffusivity (MD), intracellular neurite density (Vic) and isotropic diffusion volume (Viso) measures were therefore compared in 150 PSD (schizophrenia, schizoaffective disorder, and bipolar disorder Type I) and 63 healthy controls (HC). Additional analyses evaluated whether regions showing atrophy and/or microstructure abnormalities were better explained by DSM diagnoses, symptom burden or cognitive dysfunction. PSD exhibited increased atrophy within bilateral medial temporal lobes and subcortical structures. Gray matter along the left lateral sulcus showed evidence of increased atrophy and MD. Increased MD was also observed in homotopic fronto-temporal regions, suggesting it may serve as a precursor to atrophic changes. Global cognitive dysfunction, rather than DSM diagnoses or psychotic symptom burden, was the best predictor of increased gray matter MD. Regions of decreased FA (i.e., left frontal gray and white matter) and Vic (i.e., frontal and temporal regions and along central sulcus) were also observed for PSD, but were neither spatially concurrent with atrophic regions nor associated with clinical symptoms. Evidence of expanding microstructural spaces in gray matter demonstrated the greatest spatial overlap with current and potentially future regions of atrophy, and was associated with cognitive deficits. These results suggest that this particular structural abnormality could potentially underlie global cognitive impairment that spans traditional diagnostic categories.


Subject(s)
Psychotic Disorders , White Matter , Atrophy , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , White Matter/diagnostic imaging , White Matter/pathology
12.
Shock ; 55(4): 554-562, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32881755

ABSTRACT

INTRODUCTION: The pathology resulting from concurrent traumatic brain injury (TBI) and hemorrhagic shock (HS; TBI+HS) are leading causes of mortality and morbidity worldwide following trauma. However, the majority of large animal models of TBI+HS have utilized focal/contusional injuries rather than incorporating the types of brain trauma (closed-head injury caused by dynamic acceleration) that typify human injury. OBJECTIVE: To examine survival rates and effects on biomarkers from rotational TBI with two levels of HS. METHODS: Twenty-two sexually mature Yucatan swine (30.39 ±â€Š2.25 kg; 11 females) therefore underwent either Sham trauma procedures (n = 6) or a dynamic acceleration TBI combined with either 55% (n = 8) or 40% (n = 8) blood loss in this serial study. RESULTS: Survival rates were significantly higher for the TBI+40% (87.5%) relative to TBI+55% (12.5%) cohort, with the majority of TBI+55% animals expiring within 2 h post-trauma from apnea. Blood-based neural biomarkers and immunohistochemistry indicated evidence of diffuse axonal injury (increased NFL/Aß42), blood-brain barrier breach (increased immunoglobulin G) and inflammation (increased glial fibrillary acidic protein/ionized calcium-binding adaptor molecule 1) in the injured cohorts relative to Shams. Invasive hemodynamic measurements indicated increased shock index and decreased pulse pressure in both injury cohorts, with evidence of partial recovery for invasive hemodynamic measurements in the TBI+40% cohort. Similarly, although both injury groups demonstrated ionic and blood gas abnormalities immediately postinjury, metabolic acidosis continued to increase in the TBI+55% group ∼85 min postinjury. Somewhat surprisingly, both neural and physiological biomarkers showed significant changes within the Sham cohort across the multi-hour experimental procedure, most likely associated with prolonged anesthesia. CONCLUSION: Current results suggest the TBI+55% model may be more appropriate for severe trauma requiring immediate medical attention/standard fluid resuscitation protocols whereas the TBI+40% model may be useful for studies of prolonged field care.


Subject(s)
Brain Injuries, Traumatic/mortality , Shock, Hemorrhagic/mortality , Animals , Biomarkers , Brain Injuries, Traumatic/complications , Disease Models, Animal , Female , Male , Shock, Hemorrhagic/complications , Survival Rate , Swine
13.
J Psychiatry Neurosci ; 45(6): 430-440, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32869961

ABSTRACT

Background: Functional underpinnings of cognitive control deficits in unbiased samples (i.e., all comers) of patients with psychotic spectrum disorders (PSD) remain actively debated. While many studies suggest hypofrontality in the lateral prefrontal cortex (PFC) and greater deficits during proactive relative to reactive control, few have examined the full hemodynamic response. Methods: Patients with PSD (n = 154) and healthy controls (n = 65) performed the AX continuous performance task (AX-CPT) during rapid (460 ms) functional neuroimaging and underwent full clinical characterization. Results: Behavioural results indicated generalized cognitive deficits (slower and less accurate) across proactive and reactive control conditions in patients with PSD relative to healthy controls. We observed a delayed/prolonged neural response in the left dorsolateral PFC, the sensorimotor cortex and the superior parietal lobe during proactive control for patients with PSD. These proactive hemodynamic abnormalities were better explained by negative rather than by positive symptoms or by traditional diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR), with subsequent simulations unequivocally demonstrating how these abnormalities could be erroneously interpreted as hypoactivation. Conversely, true hypoactivity, unassociated with clinical symptoms or DSM-IV-TR diagnoses, was observed within the ventrolateral PFC during reactive control. Limitations: In spite of guidance for AX-CPT use in neuroimaging studies, one-third of patients with PSD could not perform the task above chance and were more clinically impaired. Conclusion: Current findings question the utility of the AX-CPT for neuroimaging-based appraisal of cognitive control across the full spectrum of patients with PSD. Previously reported lateral PFC "hypoactivity" during proactive control may be more indicative of a delayed/prolonged neural response, important for rehabilitative purposes. Negative symptoms may better explain certain behavioural and hemodynamic abnormalities in patients with PSD relative to DSM-IV-TR diagnoses.


Subject(s)
Executive Function/physiology , Functional Neuroimaging/standards , Parietal Lobe/physiopathology , Prefrontal Cortex/physiopathology , Psychomotor Performance/physiology , Psychotic Disorders/physiopathology , Sensorimotor Cortex/physiopathology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Young Adult
14.
J Magn Reson Imaging ; 52(6): 1701-1713, 2020 12.
Article in English | MEDLINE | ID: mdl-32592270

ABSTRACT

BACKGROUND: Physiological recovery from pediatric mild traumatic brain injury (pmTBI) as a function of age remains actively debated, with the majority of studies relying on subjective symptom report rather than objective markers of brain physiology. PURPOSE: To examine potential abnormalities in fractional amplitude of low-frequency fluctuations (fALFF) or regional homogeniety (ReHo) during resting-state fMRI following pmTBI. STUDY TYPE: Prospective cohort. POPULATION: Consecutively recruited pmTBI (N = 105; 8-18 years old) and age- and sex-matched healthy controls (HC; N = 113). FIELD STRENGTH/SEQUENCE: 3T multiecho gradient T1 -weighted and single-shot gradient-echo echo-planar imaging. ASSESSMENT: All pmTBI participants were assessed 1 week and 4 months postinjury (HC assessed at equivalent timepoints after the first visit). Comprehensive demographic, clinical, and cognitive batteries were performed in addition to primary investigation of fALFF and ReHo. All pmTBI were classified as "persistent" or "recovered" based on both assessment periods. STATISTICAL TESTS: Chi-square, nonparametric, and generalized linear models for demographic data. Generalized estimating equations for clinical and cognitive data. Voxelwise general linear models (AFNI's 3dMVM) for fALFF and ReHo assessment. RESULTS: Evidence of recovery was observed for some, but not all, clinical and cognitive measures at 4 months postinjury. fALFF was increased in the left striatum for pmTBI relative to HC both at 1 week and 4 months postinjury; whereas no significant group differences (P > 0.001) were observed for ReHo. Age-at-injury did not moderate either resting-state metric across groups. In contrast to analyses of pmTBI as a whole, there were no significant (P > 0.001) differences in either fALFF or ReHo in patients with persistent postconcussive symptoms compared to recovered patients and controls at 4 months postinjury. DATA CONCLUSIONS: Our findings suggest prolonged clinical recovery and alterations in the relative amplitude of resting-state fluctuations up to 4 months postinjury, but no clear relationship with age-at-injury or subjective symptom report. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: 2 J. MAGN. RESON. IMAGING 2020;52:1701-1713.


Subject(s)
Brain Concussion , Post-Concussion Syndrome , Adolescent , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Child , Humans , Magnetic Resonance Imaging , Prospective Studies
15.
Cortex ; 129: 314-328, 2020 08.
Article in English | MEDLINE | ID: mdl-32554227

ABSTRACT

Sensorimotor synchronization (SMS) is frequently dependent on coordination of excitatory and inhibitory activity across hemispheres, as well as the cognitive control over environmental distractors. However, the timing (motor planning versus execution) and cortical regions involved in these processes remain actively debated. Functional magnetic resonance imaging data were therefore analyzed from 34 strongly right-handed healthy adults performing a cued (to initiate motor planning) SMS task with either their right or left hand (motor execution phase) based on spatially congruent or incongruent visual stimuli. Behavioral effects of incongruent stimuli were limited to the first stimulus. Functionally, greater activation was observed in left sensorimotor cortex (SMC) and right cerebellar Lobule V for congruent versus incongruent stimuli. A negative blood-oxygen level dependent response, a putative marker of neural inhibition, was present in bilateral SMC, right supplemental motor area (SMA) and bilateral cerebellar Lobule V during the motor planning, but not execution phase. The magnitude of the inhibitory response was greater in right cortical regions and cerebellar Lobule V. Homologue connectivity was associated with inhibitory activity in the right SMA, suggesting that individual differences in intrinsic connectivity may mediate transcallosal inhibition. In summary, results suggest increased inhibition (i.e., greater negative BOLD response) within the right relative to left hemisphere, which was released once motor programs were executed. Both task and intrinsic functional connectivity results highlight a critical role of the left SMA in interhemispheric inhibition and motor planning.


Subject(s)
Motor Cortex , Adult , Cerebellum , Cues , Hand , Humans , Magnetic Resonance Imaging , Psychomotor Performance
16.
Neuroimage Clin ; 26: 102162, 2020.
Article in English | MEDLINE | ID: mdl-32037283

ABSTRACT

BACKGROUND: Higher levels of anxiety, negative affect, and impaired emotion regulation are associated with alcohol use disorder (AUD) and contribute to relapse and worse treatment outcomes. Prazosin, while typically used to treat post-traumatic stress disorder (PTSD) and other anxiety disorders, has shown promise for treating AUD. In order to better understand these underlying neural processes in individuals with AUD, our aims in this study were to measure brain activation during an anticipatory anxiety task before treatment to determine whether observed patterns supported previous work. We then aimed to measure the effects of prazosin on patients with AUD and explore whether greater baseline anticipatory anxiety (as measured by subjective and neural measures) predicts better treatment outcomes. METHODS: Thirty-four individuals seeking treatment for AUD participated in a six-week placebo-controlled study of prazosin and underwent an anticipatory anxiety task during fMRI scans at baseline and three weeks. Alcohol use over six weeks was measured. RESULTS: Greater levels of subjective anxiety and deactivation in posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC) were observed during high-threat stimuli compared to low-threat stimuli. Compared to placebo, prazosin reduced subjective anxiety to high-threat stimuli but there were no observed significant effects of prazosin on brain activation during the task. However, AUD patients with greater vmPFC deactivation during high threat relative to low threat and patients with low baseline anticipatory anxiety during the task had worse clinical outcomes on prazosin. CONCLUSIONS: Deactivation in PCC and vmPFC to high-threat stimuli replicated previous work and shows promise for further study as a marker for AUD. Although prazosin did not affect brain activation in the regions of interest during the anticipatory anxiety task, subjective levels of anxiety and brain activation in vmPFC predicted treatment outcomes in individuals with AUD undergoing treatment with prazosin, highlighting individuals more likely to benefit from prazosin than others.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists/pharmacology , Alcoholism/drug therapy , Alcoholism/physiopathology , Anticipation, Psychological/physiology , Anxiety/physiopathology , Gyrus Cinguli/physiopathology , Outcome Assessment, Health Care , Prazosin/pharmacology , Prefrontal Cortex/physiopathology , Adolescent , Adrenergic alpha-1 Receptor Antagonists/administration & dosage , Adult , Alcoholism/diagnostic imaging , Anticipation, Psychological/drug effects , Anxiety/diagnostic imaging , Anxiety/drug therapy , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/drug effects , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prazosin/administration & dosage , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/drug effects , Young Adult
17.
J Cereb Blood Flow Metab ; 40(12): 2491-2504, 2020 12.
Article in English | MEDLINE | ID: mdl-31903838

ABSTRACT

Much attention has been paid to the effects of mild traumatic brain injury (mTBI) on cerebrovascular reactivity in adult populations, yet it remains understudied in pediatric injury. In this study, 30 adolescents (12-18 years old) with pediatric mTBI (pmTBI) and 35 age- and sex-matched healthy controls (HC) underwent clinical and neuroimaging assessments during sub-acute (6.9 ± 2.2 days) and early chronic (120.4 ± 11.7 days) phases of injury. Relative to controls, pmTBI reported greater initial post-concussion symptoms, headache, pain, and anxiety, resolving by four months post-injury. Patients reported increased sleep issues and exhibited deficits in processing speed and attention across both visits. In grey-white matter interface areas throughout the brain, pmTBI displayed increased maximal fit/amplitude of a time-shifted end-tidal CO2 regressor to blood oxygen-level dependent response relative to HC, as well as increased latency to maximal fit. The alterations persisted through the early chronic phase of injury, with maximal fit being associated with complaints of ongoing sleep disturbances during post hoc analyses but not cognitive measures of processing speed or attention. Collectively, these findings suggest that deficits in the speed and degree of cerebrovascular reactivity may persist longer than current conceptualizations about clinical recovery within 30 days.


Subject(s)
Brain Concussion/physiopathology , Carbon Dioxide/metabolism , Hypercapnia/blood , Neuroimaging/methods , Adolescent , Anxiety/epidemiology , Brain Concussion/complications , Brain Concussion/metabolism , Carbon Dioxide/blood , Case-Control Studies , Cerebrovascular Circulation/physiology , Child , Female , Gray Matter/blood supply , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Headache/epidemiology , Humans , Hypercapnia/complications , Hypercapnia/physiopathology , Male , Pain/epidemiology , Post-Concussion Syndrome/diagnosis , Post-Concussion Syndrome/epidemiology , Prospective Studies , Sleep Wake Disorders/epidemiology , White Matter/blood supply , White Matter/diagnostic imaging , White Matter/metabolism
18.
Brain Imaging Behav ; 14(2): 586-598, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31115861

ABSTRACT

Impairment in cognitive control in alcohol use disorder (AUD) contributes to difficulty controlling alcohol use and, in many populations, difficulties with emotion regulation. However, the most reliable and robust marker of clinically-relevant deficits in cognitive control in AUD is unclear. Our aims were to measure relationships between BOLD signal during a Stroop task and AUD severity and change in BOLD signal and change in drinking over three weeks. We also aimed to explore the relationships between BOLD signal and subjective negative affect. Thirty-three individuals with AUD underwent a multisensory Stroop task during functional magnetic resonance imaging (fMRI), as well as a battery of neuropsychological tests and self-report assessments of negative affect and AUD severity. Greater activation in temporal gyrus and cerebellum during incongruent trials compared to congruent trials was observed, and percent signal change (incongruent minus congruent) in both clusters was positively correlated with AUD severity and self-reported negative affect. Neuropsychological task performance and self-reported impulsivity were not highly correlated with AUD severity. Hierarchical regression analyses indicated that percent signal change (incongruent minus congruent) in cerebellum was independently associated with negative affect after controlling for recent and chronic drinking. In a subset of individuals (n = 23) reduction in cerebellar percent signal change (incongruent minus congruent) was correlated with increases in percent days abstinent over 3 weeks. BOLD activation during this Stroop task may therefore be an important objective marker of AUD severity and negative affect. The potential importance of the cerebellum in emotion regulation and AUD severity is highlighted.


Subject(s)
Alcoholism/physiopathology , Alcoholism/psychology , Cognition/physiology , Adult , Affect/drug effects , Alcoholism/metabolism , Brain/physiopathology , Cerebellum/physiopathology , Female , Humans , Impulsive Behavior/drug effects , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests , Stroop Test
19.
Hum Brain Mapp ; 40(18): 5370-5381, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31456319

ABSTRACT

Although much attention has been generated in popular media regarding the deleterious effects of pediatric mild traumatic brain injury (pmTBI), a paucity of empirical evidence exists regarding the natural course of biological recovery. Fifty pmTBI patients (12-18 years old) were consecutively recruited from Emergency Departments and seen approximately 1 week and 4 months post-injury in this prospective cohort study. Data from 53 sex- and age-matched healthy controls (HC) were also collected. Functional magnetic resonance imaging was obtained during proactive response inhibition and at rest, in conjunction with independent measures of resting cerebral blood flow. High temporal resolution imaging enabled separate modeling of neural responses for preparation and execution of proactive response inhibition. A priori predictions of failed inhibitory responses (i.e., hyperactivation) were observed in motor circuitry (pmTBI>HC) and sensory areas sub-acutely and at 4 months post-injury. Paradoxically, pmTBI demonstrated hypoactivation (HC>pmTBI) during target processing, along with decreased activation within prefrontal cognitive control areas. Functional connectivity within motor circuitry at rest suggested that deficits were limited to engagement during the inhibitory task, whereas normal resting cerebral perfusion ruled out deficits in basal perfusion. In conclusion, current results suggest blood oxygen-level dependent deficits during inhibitory control may exceed commonly held beliefs about physiological recovery following pmTBI, potentially lasting up to 4 months post-injury.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/psychology , Cerebrovascular Circulation/physiology , Proactive Inhibition , Psychomotor Performance/physiology , Adolescent , Brain Concussion/physiopathology , Child , Female , Humans , Male , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology
20.
Hum Brain Mapp ; 40(13): 3843-3859, 2019 09.
Article in English | MEDLINE | ID: mdl-31119818

ABSTRACT

It has been known for decades that head motion/other artifacts affect the blood oxygen level-dependent signal. Recent recommendations predominantly focus on denoising resting state data, which may not apply to task data due to the different statistical relationships that exist between signal and noise sources. Several blind-source denoising strategies (FIX and AROMA) and more standard motion parameter (MP) regression (0, 12, or 24 parameters) analyses were therefore compared across four sets of event-related functional magnetic resonance imaging (erfMRI) and block-design (bdfMRI) datasets collected with multiband 32- (repetition time [TR] = 460 ms) or older 12-channel (TR = 2,000 ms) head coils. The amount of motion varied across coil designs and task types. Quality control plots indicated small to moderate relationships between head motion estimates and percent signal change in both signal and noise regions. Blind-source denoising strategies eliminated signal as well as noise relative to MP24 regression; however, the undesired effects on signal depended both on algorithm (FIX > AROMA) and design (bdfMRI > erfMRI). Moreover, in contrast to previous results, there were minimal differences between MP12/24 and MP0 pipelines in both erfMRI and bdfMRI designs. MP12/24 pipelines were detrimental for a task with both longer block length (30 ± 5 s) and higher correlations between head MPs and design matrix. In summary, current results suggest that there does not appear to be a single denoising approach that is appropriate for all fMRI designs. However, even nonaggressive blind-source denoising approaches appear to remove signal as well as noise from task-related data at individual subject and group levels.


Subject(s)
Artifacts , Brain/physiology , Functional Neuroimaging/methods , Head Movements , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adolescent , Adult , Brain/diagnostic imaging , Female , Functional Neuroimaging/standards , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Male , Pattern Recognition, Visual/physiology , Psychomotor Performance/physiology , Research Design , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...