Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Methods Mol Biol ; 1605: 171-189, 2017.
Article in English | MEDLINE | ID: mdl-28456965

ABSTRACT

The methylation of cytosines in DNA is a fundamental epigenetic regulatory mechanism. During preimplantation development, mammalian embryos undergo extensive epigenetic reprogramming, including the global erasure of germ cell-specific DNA methylation marks, to allow for the establishment of the pluripotent state of the epiblast. However, DNA methylation marks at specific regions, such as imprinted gene regions, escape this reprogramming process, as their inheritance from germline to soma is paramount for proper development. To study the dynamics of DNA methylation marks in single blastomeres of mouse preimplantation embryos, we devised a new approach-single cell restriction enzyme analysis of methylation (SCRAM). SCRAM allows for reliable, fast, and high-throughput analysis of DNA methylation states of multiple regions of interest from single cells. In the method described below, SCRAM is specifically used to address loss of DNA methylation at genomic imprints or other highly methylated regions of interest.


Subject(s)
Blastocyst/enzymology , DNA Methylation , DNA Restriction Enzymes/metabolism , Single-Cell Analysis/methods , 5-Methylcytosine/metabolism , Animals , Blastocyst/chemistry , Blastomeres/chemistry , Blastomeres/enzymology , Epigenesis, Genetic , Female , Genomic Imprinting , Mice
2.
Genes Dev ; 31(1): 12-17, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28115466

ABSTRACT

Global DNA demethylation is a hallmark of embryonic epigenetic reprogramming. However, embryos engage noncanonical DNA methylation maintenance mechanisms to ensure inheritance of exceptional epigenetic germline features to the soma. Besides the paradigmatic genomic imprints, these exceptions remain ill-defined, and the mechanisms ensuring demethylation resistance in the light of global reprogramming remain poorly understood. Here we show that the Y-linked gene Rbmy1a1 is highly methylated in mature sperm and resists DNA demethylation post-fertilization. Aberrant hypomethylation of the Rbmy1a1 promoter results in its ectopic activation, causing male-specific peri-implantation lethality. Rbmy1a1 is a novel target of the TRIM28 complex, which is required to protect its repressive epigenetic state during embryonic epigenetic reprogramming.


Subject(s)
DNA Methylation/genetics , Embryonic Development/genetics , Epigenesis, Genetic/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Animals , Cells, Cultured , Cellular Reprogramming/genetics , Embryo Implantation/genetics , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Genomic Imprinting/genetics , Male , Mutation , Promoter Regions, Genetic/genetics , RNA-Binding Proteins/genetics , Spermatozoa/metabolism , Tripartite Motif-Containing Protein 28
SELECTION OF CITATIONS
SEARCH DETAIL
...