Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835624

ABSTRACT

For SMA patients with only two SMN2 copies, available therapies might be insufficient to counteract lifelong motor neuron (MN) dysfunction. Therefore, additional SMN-independent compounds, supporting SMN-dependent therapies, might be beneficial. Neurocalcin delta (NCALD) reduction, an SMA protective genetic modifier, ameliorates SMA across species. In a low-dose SMN-ASO-treated severe SMA mouse model, presymptomatic intracerebroventricular (i.c.v.) injection of Ncald-ASO at postnatal day 2 (PND2) significantly ameliorates histological and electrophysiological SMA hallmarks at PND21. However, contrary to SMN-ASOs, Ncald-ASOs show a shorter duration of action limiting a long-term benefit. Here, we investigated the longer-term effect of Ncald-ASOs by additional i.c.v. bolus injection at PND28. Two weeks after injection of 500 µg Ncald-ASO in wild-type mice, NCALD was significantly reduced in the brain and spinal cord and well tolerated. Next, we performed a double-blinded preclinical study combining low-dose SMN-ASO (PND1) with 2× i.c.v. Ncald-ASO or CTRL-ASO (100 µg at PND2, 500 µg at PND28). Ncald-ASO re-injection significantly ameliorated electrophysiological defects and NMJ denervation at 2 months. Moreover, we developed and identified a non-toxic and highly efficient human NCALD-ASO that significantly reduced NCALD in hiPSC-derived MNs. This improved both neuronal activity and growth cone maturation of SMA MNs, emphasizing the additional protective effect of NCALD-ASO treatment.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Atrophy, Spinal , Mice , Animals , Humans , Muscular Atrophy, Spinal/genetics , Neurocalcin , Induced Pluripotent Stem Cells/pathology , Motor Neurons/pathology , Oligonucleotides/pharmacology , Disease Models, Animal , Survival of Motor Neuron 1 Protein
2.
Gene Ther ; 29(12): 698-709, 2022 12.
Article in English | MEDLINE | ID: mdl-35075265

ABSTRACT

Myotonic dystrophy, or dystrophia myotonica type 1 (DM1), is a multi-systemic disorder and is the most common adult form of muscular dystrophy. It affects not only muscles but also many organs, including the brain. Cerebral impairments include cognitive deficits, daytime sleepiness, and loss of visuospatial and memory functions. The expression of mutated transcripts with CUG repeats results in a gain of toxic mRNA function. The antisense oligonucleotide (ASO) strategy to treat DM1 brain deficits is limited by the fact that ASOs do not cross the blood-brain barrier after systemic administration, indicating that other methods of delivery should be considered. ASO technology has emerged as a powerful tool for developing potential new therapies for a wide variety of human diseases, and its potential has been proven in a recent clinical trial. Targeting DMPK mRNA in neural cells derived from human induced pluripotent stem cells obtained from a DM1 patient with the IONIS 486178 ASO abolished CUG-expanded foci, enabled nuclear redistribution of MBNL1/2, and corrected aberrant splicing. Intracerebroventricular injection of the IONIS 486178 ASO in DMSXL mice decreased the levels of mutant DMPK mRNAs by up to 70% throughout different brain regions. It also reversed behavioral abnormalities following neonatal administration. The present study indicated that the IONIS 486178 ASO targets mutant DMPK mRNAs in the brain and strongly supports the feasibility of a therapy for DM1 patients based on the intrathecal injection of an ASO.


Subject(s)
Induced Pluripotent Stem Cells , Myotonic Dystrophy , Adult , Humans , Animals , Mice , Myotonic Dystrophy/therapy , Myotonic Dystrophy/drug therapy , Myotonin-Protein Kinase/genetics , Myotonin-Protein Kinase/metabolism , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Trinucleotide Repeat Expansion , RNA-Binding Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Oligonucleotides/therapeutic use , Brain/metabolism
3.
Hum Mol Genet ; 31(1): 82-96, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34368854

ABSTRACT

Spinal muscular atrophy (SMA) is caused by the loss of the survival motor neuron 1 (SMN1) gene function. The related SMN2 gene partially compensates but produces insufficient levels of SMN protein due to alternative splicing of exon 7. Evrysdi™ (risdiplam), recently approved for the treatment of SMA, and related compounds promote exon 7 inclusion to generate full-length SMN2 mRNA and increase SMN protein levels. SMNΔ7 type I SMA mice survive without treatment for ~17 days. SMN2 mRNA splicing modulators increase survival of SMN∆7 mice with treatment initiated at postnatal day 3 (PND3). To define SMN requirements for adult mice, SMNΔ7 mice were dosed with an SMN2 mRNA splicing modifier from PND3 to PND40, then dosing was stopped. Mice not treated after PND40 showed progressive weight loss, necrosis, and muscle atrophy after ~20 days. Male mice presented a more severe phenotype than female mice. Mice dosed continuously did not show disease symptoms. The estimated half-life of SMN protein is 2 days indicating that the SMA phenotype reappeared after SMN protein levels returned to baseline. Although SMN protein levels decreased with age in mice and SMN protein levels were higher in brain than in muscle, our studies suggest that SMN protein is required throughout the life of the mouse and is especially essential in adult peripheral tissues including muscle. These studies indicate that drugs such as risdiplam will be optimally therapeutic when given as early as possible after diagnosis and potentially will be required for the life of an SMA patient.


Subject(s)
Muscular Atrophy, Spinal , Alternative Splicing , Animals , Disease Models, Animal , Disease Progression , Exons , Female , Humans , Male , Mice , Muscular Atrophy, Spinal/metabolism , RNA Splicing , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein
5.
Mol Cell ; 77(5): 1032-1043.e4, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31924447

ABSTRACT

An attractive approach to reduce gene expression is via the use of antisense oligonucleotides (ASOs) that harness the RNase H1 mechanism. Here we show that RNase H ASOs targeted to introns or exons robustly reduce the level of spliced RNA associated with chromatin. Surprisingly, intron-targeted ASOs reduce the level of pre-mRNA associated with chromatin to a greater extent than exon-targeted ASOs. This indicates that exon-targeted ASOs achieve full activity after the pre-mRNA has undergone splicing, but before the mRNA is released from chromatin. Even though RNase H ASOs can reduce the level of RNA associated with chromatin, the effect of ASO-directed RNA degradation on transcription has never been documented. Here we show that intron-targeted ASOs and, to a lesser extent, exon-targeted ASOs cause RNA polymerase II (Pol II) transcription termination in cultured cells and mice. Furthermore, ASO-directed transcription termination is mediated by the nuclear exonuclease XRN2.


Subject(s)
Chromatin/metabolism , Oligonucleotides, Antisense/metabolism , RNA Precursors/metabolism , RNA Stability , RNA, Messenger/metabolism , Ribonuclease H/metabolism , Transcription Termination, Genetic , Animals , Chromatin/genetics , Exons , Exoribonucleases/genetics , Exoribonucleases/metabolism , Female , HCT116 Cells , Humans , Introns , Mice, Inbred C57BL , Models, Genetic , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Oligonucleotides, Antisense/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , Ribonuclease H/genetics , Time Factors
6.
Neurobiol Dis ; 136: 104702, 2020 03.
Article in English | MEDLINE | ID: mdl-31837419

ABSTRACT

Mutations in Cu/Zn superoxide dismutase (SOD1) cause ~20% of familial ALS (FALS), which comprises 10% of total ALS cases. In mutant SOD1- (mtSOD1-) induced ALS, misfolded aggregates of SOD1 lead to activation of the unfolded protein response/integrated stress response (UPR/ISR). Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a kinase that phosphorylates eukaryotic translation initiator factor 2α (p-eIF2α), coordinates the response by causing a global suppression of protein synthesis. Growth arrest and DNA damage 34 (GADD34) dephosphorylates p-eIF2α, allowing protein synthesis to return to normal. If the UPR/ISR is overwhelmed by the amount of misfolded protein, CCAAT/enhancer-binding homologous protein (CHOP) is activated leading to apoptosis. In the current study we investigated the effect of knocking down CHOP and GADD34 on disease of G93A and G85R mtSOD1 mice. Although a CHOP antisense oligonucleotide had no effect on survival, an intravenous injection of GADD34 shRNA encoded in adeno-associated virus 9 (AAV9) into neonatal G93A as well as neonatal G85R mtSOD1 mice led to a significantly increased survival. G85R mtSOD1 mice had a reduction in SOD1 aggregates/load, astrocytosis, and microgliosis. In contrast, there was no change in disease phenotype when GADD34 shRNA was delivered to older G93A mtSOD1 mice. Our current study shows that GADD34 shRNA is effective in ameliorating disease when administered to neonatal mtSOD1 mice. Targeting the UPR/ISR may be beneficial in mtSOD1-induced ALS as well as other neurodegenerative diseases in which misfolded proteins and ER stress have been implicated.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Gene Knockdown Techniques/methods , Protein Phosphatase 1/deficiency , Protein Phosphatase 1/genetics , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/prevention & control , Animals , Animals, Newborn , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Superoxide Dismutase-1/metabolism
7.
Am J Hum Genet ; 105(1): 221-230, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31230718

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disease causing the most frequent genetic childhood lethality. Recently, nusinersen, an antisense oligonucleotide (ASO) that corrects SMN2 splicing and thereby increases full-length SMN protein, has been approved by the FDA and EMA for SMA therapy. However, the administration of nusinersen in severe and/or post-symptomatic SMA-affected individuals is insufficient to counteract the disease. Therefore, additional SMN-independent therapies are needed to support the function of motoneurons and neuromuscular junctions. We recently identified asymptomatic SMN1-deleted individuals who were protected against SMA by reduced expression of neurocalcin delta (NCALD). NCALD reduction is proven to be a protective modifier of SMA across species, including worm, zebrafish, and mice. Here, we identified Ncald-ASO3-out of 450 developed Ncald ASOs-as the most efficient and non-toxic ASO for the CNS, by applying a stepwise screening strategy in cortical neurons and adult and neonatal mice. In a randomized-blinded preclinical study, a single subcutaneous low-dose SMN-ASO and a single intracerebroventricular Ncald-ASO3 or control-ASO injection were presymptomatically administered in a severe SMA mouse model. NCALD reduction of >70% persisted for about 1 month. While low-dose SMN-ASO rescues multiorgan impairment, additional NCALD reduction significantly ameliorated SMA pathology including electrophysiological and histological properties of neuromuscular junctions and muscle at P21 and motoric deficits at 3 months. The present study shows the additional benefit of a combinatorial SMN-dependent and SMN-independent ASO-based therapy for SMA. This work illustrates how a modifying gene, identified in some asymptomatic individuals, helps to develop a therapy for all SMA-affected individuals.


Subject(s)
Disease Models, Animal , Gene Expression Regulation , Muscular Atrophy, Spinal/therapy , Neurocalcin/antagonists & inhibitors , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides/administration & dosage , Survival of Motor Neuron 1 Protein/metabolism , Animals , Mice , Muscular Atrophy, Spinal/genetics , Neurocalcin/genetics , Survival of Motor Neuron 1 Protein/genetics
8.
Neurobiol Dis ; 114: 174-183, 2018 06.
Article in English | MEDLINE | ID: mdl-29518482

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal adult onset motor neuron disease characterized by progressive denervation and subsequent motor impairment. EphA4, a negative regulator of axonal growth, was recently identified as a genetic modifier in fish and rodent models of ALS. To evaluate the therapeutic potential of EphA4 for ALS, we examined the effect of CNS-directed EphA4 reduction in preclinical mouse models of ALS, and assessed if the levels of EPHA4 mRNA in blood correlate with disease onset and progression in human ALS patients. We developed antisense oligonucleotides (ASOs) to specifically reduce the expression of EphA4 in the central nervous system (CNS) of adult mice. Intracerebroventricular administration of an Epha4-ASO in wild-type mice inhibited Epha4 mRNA and protein in the brain and spinal cord, and promoted re-innervation and functional recovery after sciatic nerve crush. In contrast, lowering of EphA4 in the CNS of two mouse models of ALS (SOD1G93A and PFN1G118V) did not improve their motor function or survival. Furthermore, the level of EPHA4 mRNA in human blood correlated weakly with age of disease onset, and it was not a significant predictor of disease progression as measured by ALS Functional Rating Scores (ALSFRS). Our data demonstrates that lowering EphA4 in the adult CNS may not be a stand-alone viable strategy for treating ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Oligonucleotides, Antisense/administration & dosage , Receptor, EphA4/antagonists & inhibitors , Receptor, EphA4/metabolism , Adult , Aged , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/drug effects , Brain/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Random Allocation , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
9.
Hum Mol Genet ; 26(4): 686-701, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28040732

ABSTRACT

The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeleton-regulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Mutation, Missense , Profilins/biosynthesis , Spinal Cord/metabolism , Amino Acid Substitution , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/pathology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Profilins/genetics , Spinal Cord/pathology
10.
Hum Mol Genet ; 25(10): 1885-1899, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26931466

ABSTRACT

Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.


Subject(s)
Isocoumarins/administration & dosage , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Piperazines/administration & dosage , Small Molecule Libraries/pharmacokinetics , Survival of Motor Neuron 2 Protein/genetics , Alternative Splicing/drug effects , Alternative Splicing/genetics , Animals , Central Nervous System/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Exons/genetics , Humans , Leukocytes, Mononuclear/drug effects , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/blood , Muscular Atrophy, Spinal/pathology , RNA Splicing/drug effects , RNA Splicing/genetics , Skin/metabolism , Small Molecule Libraries/administration & dosage , Survival of Motor Neuron 2 Protein/blood
11.
Hum Mol Genet ; 25(5): 964-75, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26758873

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in clinical trials. An outstanding issue in the field is whether initiating treatment in symptomatic older patients would confer a therapeutic benefit, an important consideration as the majority of patients with milder forms of SMA are diagnosed at an older age. An SMA mouse model that recapitulates the disease phenotype observed in adolescent and adult SMA patients is needed to address this important question. We demonstrate here that Δ7 mice, a model of severe SMA, treated with a suboptimal dose of an SMN2 splicing modifier show increased SMN protein, survive into adulthood and display SMA disease-relevant pathologies. Increasing the dose of the splicing modifier after the disease symptoms are apparent further mitigates SMA histopathological features in suboptimally dosed adult Δ7 mice. In addition, inhibiting myostatin using intramuscular injection of AAV1-follistatin ameliorates muscle atrophy in suboptimally dosed Δ7 mice. Taken together, we have developed a new murine model of symptomatic SMA in adolescents and adult mice that is induced pharmacologically from a more severe model and demonstrated efficacy of both SMN2 splicing modifiers and a myostatin inhibitor in mice at later disease stages.


Subject(s)
Follistatin/pharmacology , Immunologic Factors/pharmacology , Muscular Atrophy, Spinal/drug therapy , RNA Splicing/drug effects , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/agonists , Adolescent , Adult , Age of Onset , Animals , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Gene Deletion , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Mice , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Myostatin/antagonists & inhibitors , Myostatin/genetics , Myostatin/metabolism , Phenotype , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
12.
Science ; 345(6197): 688-93, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25104390

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality. Through chemical screening and optimization, we identified orally available small molecules that shift the balance of SMN2 splicing toward the production of full-length SMN2 messenger RNA with high selectivity. Administration of these compounds to Δ7 mice, a model of severe SMA, led to an increase in SMN protein levels, improvement of motor function, and protection of the neuromuscular circuit. These compounds also extended the life span of the mice. Selective SMN2 splicing modifiers may have therapeutic potential for patients with SMA.


Subject(s)
Alternative Splicing/drug effects , Coumarins/administration & dosage , Isocoumarins/administration & dosage , Longevity/drug effects , Muscular Atrophy, Spinal/drug therapy , Pyrimidinones/administration & dosage , Small Molecule Libraries/administration & dosage , Survival of Motor Neuron 2 Protein/genetics , Administration, Oral , Animals , Cells, Cultured , Coumarins/chemistry , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Isocoumarins/chemistry , Mice , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Pyrimidinones/chemistry , RNA, Messenger/genetics , Sequence Deletion , Small Molecule Libraries/chemistry , Survival of Motor Neuron 2 Protein/metabolism
13.
EMBO Mol Med ; 5(10): 1586-601, 2013 10.
Article in English | MEDLINE | ID: mdl-24014320

ABSTRACT

Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and the tissue-specific pathogenesis of post-developmental SMN deficiency remains elusive. Here, we use an antisense oligonucleotide (ASO) to exacerbate SMN2 mis-splicing. Intracerebroventricular ASO injection in adult SMN2-transgenic mice phenocopies key aspects of adult-onset SMA, including delayed-onset motor dysfunction and relevant histopathological features. SMN2 mis-splicing increases during late-stage disease, likely accelerating disease progression. Systemic ASO injection in adult mice causes peripheral SMN2 mis-splicing and affects prognosis, eliciting marked liver and heart pathologies, with decreased IGF1 levels. ASO dose-response and time-course studies suggest that only moderate SMN levels are required in the adult central nervous system, and treatment with a splicing-correcting ASO shows a broad therapeutic time window. We describe distinctive pathological features of adult-onset and early-onset SMA.


Subject(s)
Muscular Atrophy, Spinal/pathology , RNA Splicing , Animals , Base Sequence , Central Nervous System/metabolism , Humans , Insulin-Like Growth Factor I/metabolism , Liver/pathology , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/metabolism , Myocardium/pathology , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , RNA Splicing/drug effects , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/antagonists & inhibitors , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Time Factors
14.
Genes Dev ; 26(16): 1874-84, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22895255

ABSTRACT

Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect-e.g., with ASOs-is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn(-/-) mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with α-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics.


Subject(s)
Genetic Techniques , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Animals , Genetic Therapy , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/mortality , Muscular Atrophy, Spinal/pathology , Oligonucleotides, Antisense , RNA Splicing/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
15.
Hum Mol Genet ; 21(1): 185-95, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21968514

ABSTRACT

Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in >20 muscles in the SMNΔ7 SMA mouse model. We found that severe denervation (<50% fully innervated endplates) occurs selectively in many vulnerable axial muscles and several appendicular muscles at the disease end stage. Since these vulnerable muscles were located throughout the body and were comprised of varying muscle fiber types, it is unlikely that muscle location or fiber type determines susceptibility to denervation. Furthermore, we found a similar extent of neurofilament accumulation at NMJs in both vulnerable and resistant muscles before the onset of denervation, suggesting that neurofilament accumulation does not predict subsequent NMJ denervation. Since vulnerable muscles were initially innervated, but later denervated, loss of innervation in SMA may be attributed to defects in synapse maintenance. Finally, we found that denervation was amendable by trichostatin A (TSA) treatment, which increased innervation in clinically relevant muscles in TSA-treated SMNΔ7 mice. Our findings suggest that neuromuscular denervation in vulnerable muscles is a widespread pathology in SMA, and can serve as a preparation for elucidating the biological basis of synapse loss, and for evaluating therapeutic efficacy.


Subject(s)
Disease Models, Animal , Mice , Muscle, Skeletal/innervation , Muscular Atrophy, Spinal/pathology , Neuromuscular Junction/surgery , Animals , Male , Mice, Knockout , Mice, Transgenic , Muscle Denervation , Muscle, Skeletal/pathology , Muscle, Skeletal/surgery , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/surgery , Nerve Degeneration , Neuromuscular Junction/metabolism , Synapses/metabolism , Synapses/pathology
16.
PLoS One ; 5(11): e15457, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-21085654

ABSTRACT

Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.


Subject(s)
Muscular Atrophy, Spinal/physiopathology , Neuromuscular Junction/physiopathology , Spinal Cord/physiopathology , Synapses/physiology , Animals , Axons/physiology , Disease Models, Animal , Disease Progression , Electrophysiology , Female , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiopathology , Hindlimb/innervation , Hindlimb/physiopathology , Immunohistochemistry , Male , Mice , Mice, Transgenic , Motor Neurons/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Neuromuscular Junction/metabolism , Proprioception/physiology , Receptors, Cholinergic/metabolism , Spinal Cord/metabolism , Spinal Nerve Roots/metabolism , Spinal Nerve Roots/physiopathology , Synapses/genetics
17.
J Mol Neurosci ; 30(1-2): 189-92, 2006.
Article in English | MEDLINE | ID: mdl-17192673

ABSTRACT

Acetylcholinesterase (AChE; EC 3.1.1.7) is a highly polymorphic enzyme (Massoulié, 2002). Asingle ACHE gene produces several types of catalytic subunits by alternative splicing, but a single splice variant, called type T (AChET), is expressed in adult mammalian muscle and brain. Catalytic subunits of AChET produce amphiphilic monomers and dimers, nonamphiphilic homotetramers, as well as heteromeric associations with anchoring proteins, ColQ (collagenous subunit) and PRiMA (proline-rich membrane anchor), which allow their functional localization in cholinergic synapses (Massoulié, 2002). ColQ characterizes the collagen-tailed forms (Aforms) of AChE and butyrylcholinesterase (BChE), which are localized in the basal lamina at neuromuscular junctions (NMJs) of vertebrates (Krejci et al., 1999); in these molecules (A4, A8, A12), one, two, or three tetramers of catalytic subunits are disulfide-linked to the strands of a triple helix of ColQ collagen. The cDNAs encoding ColQ, which have two transcripts, have been cloned: ColQ-1a predominantly in fast-twitch muscle, and ColQ-1 predominantly in slow-twitch muscle. The tetrameric globular (G4) form of AChE is characterized by linkage to PRiMA. PRiMAcDNA encodes a single-pass approximately 20-kDa type-I transmembrane protein and, similar to that of ColQ, contains a short PRAD (proline-rich attachment domain) that is able to organize AChE catalytic subunits into tetramers and anchor the enzyme at the surface of neuron and muscle (Massoulié, 2002).


Subject(s)
Acetylcholinesterase/genetics , Neuromuscular Junction/enzymology , Transcription, Genetic , Alternative Splicing , Animals , Chick Embryo , DNA Primers , Gene Expression Regulation, Enzymologic , Genetic Variation , Kinetics , Mammals , Protein Subunits/genetics , Reverse Transcriptase Polymerase Chain Reaction , Vertebrates
18.
FEBS Lett ; 579(11): 2469-74, 2005 Apr 25.
Article in English | MEDLINE | ID: mdl-15848190

ABSTRACT

The role of adenosine 5'-triphosphate (ATP) and P2Y(1) nucleotide receptor in potentiating agrin-induced acetylcholine receptor (AChR) aggregation is being demonstrated in a co-culture system of NG108-15 cell, a mouse neuroblastoma X rat glioma hybrid cell line that resembles spinal motor neuron, with C2C12 myotube. In the co-cultures, antagonized P2Y(1) receptors showed a reduction in NG108-15 cell-induced AChR aggregation. Parallel to this observation, cultured NG108-15 cell secreted ATP into the conditioned medium in a time-dependent manner. Enhancement of ATP release from the cultured NG108-15 cells by overexpression of active mutants of small GTPases increased the aggregation of AChRs in co-culturing with C2C12 myotubes. In addition, ecto-nucleotidase was revealed in the co-culture, which rapidly degraded the applied ATP. These results support the notion that ATP has a role in directing the formation of post-synaptic apparatus in vertebrate neuromuscular junctions.


Subject(s)
Adenosine Triphosphate/pharmacology , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Receptors, Cholinergic/chemistry , Receptors, Cholinergic/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Line , Coculture Techniques , Mice , Monomeric GTP-Binding Proteins/metabolism , Muscle Fibers, Skeletal/metabolism , Protein Binding/drug effects , Protein Structure, Quaternary/drug effects , Rats , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y1
19.
Mol Pharmacol ; 66(4): 794-806, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15258260

ABSTRACT

At the vertebrate neuromuscular junction (nmj), ATP is known to be coreleased with acetylcholine from the synaptic vesicles. We have previously shown that the P2Y1 receptor is localized at the nmj. Here, we extend the findings to show that another nucleotide receptor, P2Y2, is also localized there and with P2Y1 jointly mediates trophic responses to ATP. The P2Y2 receptor mRNA in rat muscle increased during development and peaked in adulthood. The P2Y2 receptor protein was shown to become restricted to the nmjs during embryonic development, in chick and in rat. In both rat and chick myotubes, P2Y1 and P2Y2 are expressed, increasing with differentiation, but P2Y4 is absent. The P2Y2 agonist UTP stimulated there inositol trisphosphate production and phosphorylation of extracellular signal-regulated kinases, in a dose-dependent manner. These UTP-induced responses were insensitive to the P2Y1-specific antagonist MRS 2179 (2'-deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt). In differentiated myotubes, P2Y2 activation induced expression of acetylcholinesterase (AChE) protein (but not control alpha-tubulin). This was shown to arise from AChE promoter activation, mediated by activation of the transcription factor Elk-1. Two Elk-1-responsive elements, located in intron-1 of the AChE promoter, were found by mutation to act in this gene activation initiated at the P2Y2 receptor and also in that initiated at the P2Y1 receptor. Furthermore, the promoters of different acetylcholine receptor subunits were also stimulated by application of UTP to myotubes. These results indicate that ATP regulates postsynaptic gene expressions via a common pathway triggered by the activation of P2Y1 and P2Y2 receptors at the nmjs.


Subject(s)
Acetylcholinesterase/metabolism , Gene Expression/physiology , Neuromuscular Junction/metabolism , Receptors, Cholinergic/metabolism , Receptors, Purinergic P2/physiology , Acetylcholinesterase/genetics , Adenosine Diphosphate/physiology , Adenosine Triphosphate/physiology , Animals , Cells, Cultured , Chickens , Inositol Phosphates/metabolism , Mitogen-Activated Protein Kinases/metabolism , Muscles/metabolism , Phosphorylation , Protein Kinase C/metabolism , RNA, Messenger/metabolism , Rats , Receptors, Cholinergic/genetics , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y1 , Receptors, Purinergic P2Y2 , Spinal Cord/metabolism , Uridine Triphosphate/physiology , Xenopus
20.
J Biol Chem ; 279(30): 31081-8, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15145960

ABSTRACT

At vertebrate neuromuscular junctions, ATP is known to stabilize acetylcholine in the synaptic vesicles and to be co-released with it. We have shown previously that a nucleotide receptor, P2Y(1) receptor, is localized at the nmjs, and we propose that this mediates a trophic role for synaptic ATP there. In cultured myotubes, the activation of P2Y(1) receptors modulated agrin-induced acetylcholine receptor (AChR) aggregation in a potentiation manner. This potentiation effect in agrin-induced AChR aggregation was reduced by antagonizing the P2Y(1) receptors. The guanosine triphosphatase RhoA was shown to be responsible for this P2Y(1)-potentiated effect. The localization of RhoA in rat and chicken skeletal muscles was restricted at the neuromuscular junctions. Application of P2Y(1) agonists in cultured myotubes induced RhoA activation, which showed an additive effect with agrin-induced RhoA activation. Over-expression of dominant-negative mutant of RhoA in cultured myotubes diminished the agrin-induced AChR aggregation, as well as the potentiation effect of P2Y(1)-specific agonist. Application of UTP in the cultures also triggered similar responses as did 2-methylthioadenosine 5'-diphosphate, suggesting the involvement of other subtypes of P2Y receptors. These results demonstrate that RhoA could serve as a downstream mediator of signaling mediated by P2Y(1) receptor and agrin, which therefore synergizes the effects of the two neuron-derived trophic factors in modulating the formation and/or maintenance of post-synaptic apparatus at the neuromuscular junctions.


Subject(s)
Adenosine Triphosphate/administration & dosage , Agrin/administration & dosage , Muscle Fibers, Skeletal/metabolism , Receptors, Cholinergic/metabolism , Receptors, Purinergic P2/metabolism , rhoA GTP-Binding Protein/metabolism , Adenosine Triphosphate/metabolism , Agrin/metabolism , Animals , Cells, Cultured , Chick Embryo , Chickens , Drug Synergism , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Mutation , Neuromuscular Junction/drug effects , Neuromuscular Junction/metabolism , Purinergic P2 Receptor Agonists , Purinergic P2 Receptor Antagonists , Rats , Receptors, Purinergic P2Y1 , Signal Transduction , rhoA GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...