Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(9): e2306233, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37849033

ABSTRACT

The nitrides and carbides of transition metals are highly favored due to their excellent physical and chemical properties, among which MXene is a hot research topic for microwave absorption. Herein, the controlled preparation of 3D Mo2 TiC2 Tx -based microspheres toward microwave absorption is reported for the first time. With the merits of the performances of both reduced graphite oxide (RGO) and MXene sufficiently considered, the influence of carbonization temperature on the internal crystal structure and the effective microwave-material interaction surface of the prepared Mo2 TiC2 Tx /RGO is systematically investigated. The structure-activity relationships relating the apparent morphology and crystal structure to the microwave absorption performance are deeply explored, and the wave absorption mechanism is put forward as well. The results show that the Mo2 TiC2 Tx /RGO-700 product obtained after heating treatment at 700 °C exhibits excellent microwave absorption performance, with the RLmin being up to -55.1 dB@2.1 mm@13.8 GHz, and the corresponding effective absorption bandwidth covering 5.7 GHz. The outstanding microwave absorption characteristics are attributed to the appropriate impedance matching, high specific surface area, rich intrinsic defects, desirable conductivity, and strong multipolarization capabilities. This work enriches the types of MXene-based composite absorbers and provides a new strategy for controlled preparation of high-performance 3D composite absorbers.

2.
Small ; 19(7): e2205925, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36507608

ABSTRACT

Advanced carbon materials are constantly being used in the field of microwave absorption. Herein, in order to enrich the variety and expand the application fields of graphdiyne (GDY), the wrinkled graphene (RGO) nanosheet coated and embedded with GDY porous microspheres (RGO/GDY) are prepared by GDY synthesis, ultrasonic spray, and pyrolysis. The study finds that RGO and GDY have effective synergistic effects. The suitable pores and composition, conductive network formed by overlapping 0D and 2D materials, special surface and internal morphology design, and high-temperature activation process make RGO/GDY exhibit excellent impedance matching and attenuation capabilities. Under the best amount of GDY (20 mg), the particle sizes of the microspheres (≈6 µm), and filler content (27.5%), the minimum reflection loss (RLmin ) is -58 dB@8.3 GHz, and the corresponding matching thickness is 2.7 mm. The effective absorption bandwidth is 4.3 GHz as the thickness is 1.9 mm. By adjusting the thickness, the absorber can completely absorb microwaves of all the C, X, and Ku bands. The microwave absorbing mechanisms are elucidated. GDY materials are first applied to the field of microwave absorption, enhancing the absorption performance of RGO/GDY. It provides a new way to manufacture electromagnetic wave absorbers with satisfactory performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...