Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 175: 116730, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749175

ABSTRACT

Acute kidney injury (AKI) disrupts energy metabolism. Targeting metabolism through AMP-activated protein kinase (AMPK) may alleviate AKI. ATX-304, a pan-AMPK activator, was evaluated in C57Bl/6 mice and tubular epithelial cell (TEC) cultures. Mice received ATX-304 (1 mg/g) or control chow for 7 days before cisplatin-induced AKI (CI-AKI). Primary cultures of tubular epithelial cells (TECs) were pre-treated with ATX-304 (20 µM, 4 h) prior to exposure to cisplatin (20 µM, 23 h). ATX-304 increased acetyl-CoA carboxylase phosphorylation, indicating AMPK activation. It protected against CI-AKI measured by serum creatinine (control 0.05 + 0.03 mM vs ATX-304 0.02 + 0.01 mM, P = 0.03), western blot for neutrophil gelatinase-associated lipocalin (NGAL) (control 3.3 + 1.8-fold vs ATX-304 1.2 + 0.55-fold, P = 0.002), and histological injury (control 3.5 + 0.59 vs ATX-304 2.7 + 0.74, P = 0.03). In TECs, pre-treatment with ATX-304 protected against cisplatin-mediated injury, as measured by lactate dehydrogenase release, MTS cell viability, and cleaved caspase 3 expression. ATX-304 protection against cisplatin was lost in AMPK-null murine embryonic fibroblasts. Metabolomic analysis in TECs revealed that ATX-304 (20 µM, 4 h) altered 66/126 metabolites, including fatty acids, tricarboxylic acid cycle metabolites, and amino acids. Metabolic studies of live cells using the XFe96 Seahorse analyzer revealed that ATX-304 increased the basal TEC oxygen consumption rate by 38%, whereas maximal respiration was unchanged. Thus, ATX-304 protects against cisplatin-mediated kidney injury via AMPK-dependent metabolic reprogramming, revealing a promising therapeutic strategy for AKI.


Subject(s)
AMP-Activated Protein Kinases , Acute Kidney Injury , Cisplatin , Mice, Inbred C57BL , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , AMP-Activated Protein Kinases/metabolism , Mice , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cells, Cultured , Protective Agents/pharmacology , Phosphorylation , Biphenyl Compounds , Pyrones , Thiophenes
2.
Mol Metab ; 75: 101761, 2023 09.
Article in English | MEDLINE | ID: mdl-37380024

ABSTRACT

OBJECTIVE: The AMP-activated protein kinase (AMPK) gets activated in response to energetic stress such as contractions and plays a vital role in regulating various metabolic processes such as insulin-independent glucose uptake in skeletal muscle. The main upstream kinase that activates AMPK through phosphorylation of α-AMPK Thr172 in skeletal muscle is LKB1, however some studies have suggested that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) acts as an alternative kinase to activate AMPK. We aimed to establish whether CaMKK2 is involved in activation of AMPK and promotion of glucose uptake following contractions in skeletal muscle. METHODS: A recently developed CaMKK2 inhibitor (SGC-CAMKK2-1) alongside a structurally related but inactive compound (SGC-CAMKK2-1N), as well as CaMKK2 knock-out (KO) mice were used. In vitro kinase inhibition selectivity and efficacy assays, as well as cellular inhibition efficacy analyses of CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) were performed. Phosphorylation and activity of AMPK following contractions (ex vivo) in mouse skeletal muscles treated with/without CaMKK inhibitors or isolated from wild-type (WT)/CaMKK2 KO mice were assessed. Camkk2 mRNA in mouse tissues was measured by qPCR. CaMKK2 protein expression was assessed by immunoblotting with or without prior enrichment of calmodulin-binding proteins from skeletal muscle extracts, as well as by mass spectrometry-based proteomics of mouse skeletal muscle and C2C12 myotubes. RESULTS: STO-609 and SGC-CAMKK2-1 were equally potent and effective in inhibiting CaMKK2 in cell-free and cell-based assays, but SGC-CAMKK2-1 was much more selective. Contraction-stimulated phosphorylation and activation of AMPK were not affected with CaMKK inhibitors or in CaMKK2 null muscles. Contraction-stimulated glucose uptake was comparable between WT and CaMKK2 KO muscle. Both CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) and the inactive compound (SGC-CAMKK2-1N) significantly inhibited contraction-stimulated glucose uptake. SGC-CAMKK2-1 also inhibited glucose uptake induced by a pharmacological AMPK activator or insulin. Relatively low levels of Camkk2 mRNA were detected in mouse skeletal muscle, but neither CaMKK2 protein nor its derived peptides were detectable in mouse skeletal muscle tissue. CONCLUSIONS: We demonstrate that pharmacological inhibition or genetic loss of CaMKK2 does not affect contraction-stimulated AMPK phosphorylation and activation, as well as glucose uptake in skeletal muscle. Previously observed inhibitory effect of STO-609 on AMPK activity and glucose uptake is likely due to off-target effects. CaMKK2 protein is either absent from adult murine skeletal muscle or below the detection limit of currently available methods.


Subject(s)
AMP-Activated Protein Kinases , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Insulins , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Glucose/metabolism , Insulins/metabolism , Mice, Knockout , Muscle, Skeletal/metabolism , Protein Serine-Threonine Kinases/metabolism
3.
Sci Rep ; 12(1): 21531, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513726

ABSTRACT

Mitochondrial dynamin-related protein 1 (Drp1) is a large GTPase regulator of mitochondrial dynamics and is known to play an important role in numerous pathophysiological processes. Despite being the most widely used Drp1 inhibitor, the specificity of Mdivi-1 towards human Drp1 has not been definitively proven and there have been numerous issues reported with its use including off-target effects. In our hands Mdivi-1 showed varying binding affinities toward human Drp1, potentially impacted by compound aggregation. Herein, we sought to identify a novel small molecule inhibitor of Drp1. From an initial virtual screening, we identified DRP1i27 as a compound which directly bound to the human isoform 3 of Drp1 via surface plasmon resonance and microscale thermophoresis. Importantly, DRP1i27 was found to have a dose-dependent increase in the cellular networks of fused mitochondria but had no effect in Drp1 knock-out cells. Further analogues of this compound were identified and screened, though none displayed greater affinity to human Drp1 isoform 3 than DRP1i27. To date, this is the first small molecule inhibitor shown to directly bind to human Drp1.


Subject(s)
Dynamins , Quinazolinones , Humans , Dynamins/antagonists & inhibitors , GTP Phosphohydrolases/metabolism , Mitochondrial Dynamics , Quinazolinones/pharmacology
4.
Cell Rep ; 41(12): 111862, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36543129

ABSTRACT

AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis and a therapeutic target for metabolic diseases. Co/post-translational N-myristoylation of glycine-2 (Gly2) of the AMPK ß subunit has been suggested to regulate the distribution of the kinase between the cytosol and membranes through a "myristoyl switch" mechanism. However, the relevance of AMPK myristoylation for metabolic signaling in cells and in vivo is unclear. Here, we generated knockin mice with a Gly2-to-alanine point mutation of AMPKß1 (ß1-G2A). We demonstrate that non-myristoylated AMPKß1 has reduced stability but is associated with increased kinase activity and phosphorylation of the Thr172 activation site in the AMPK α subunit. Using proximity ligation assays, we show that loss of ß1 myristoylation impedes colocalization of the phosphatase PPM1A/B with AMPK in cells. Mice carrying the ß1-G2A mutation have improved metabolic health with reduced adiposity, hepatic lipid accumulation, and insulin resistance under conditions of high-fat diet-induced obesity.


Subject(s)
AMP-Activated Protein Kinases , Fatty Liver , Animals , Mice , Phosphorylation , AMP-Activated Protein Kinases/metabolism , Diet, High-Fat , Protein Processing, Post-Translational , Obesity , Myristic Acid/metabolism , Mice, Inbred C57BL , Protein Phosphatase 2C/metabolism
5.
Biochem J ; 479(11): 1181-1204, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35552369

ABSTRACT

The AMP-activated protein kinase (AMPK) αßγ heterotrimer is a primary cellular energy sensor and central regulator of energy homeostasis. Activating skeletal muscle AMPK with small molecule drugs improves glucose uptake and provides an opportunity for new strategies to treat type 2 diabetes and insulin resistance, with recent genetic and pharmacological studies indicating the α2ß2γ1 isoform combination as the heterotrimer complex primarily responsible. With the goal of developing α2ß2-specific activators, here we perform structure/function analysis of the 2-hydroxybiphenyl group of SC4, an activator with tendency for α2-selectivity that is also capable of potently activating ß2 complexes. Substitution of the LHS 2-hydroxyphenyl group with polar-substituted cyclohexene-based probes resulted in two AMPK agonists, MSG010 and MSG011, which did not display α2-selectivity when screened against a panel of AMPK complexes. By radiolabel kinase assay, MSG010 and MSG011 activated α2ß2γ1 AMPK with one order of magnitude greater potency than the pan AMPK activator MK-8722. A crystal structure of MSG011 complexed to AMPK α2ß1γ1 revealed a similar binding mode to SC4 and the potential importance of an interaction between the SC4 2-hydroxyl group and α2-Lys31 for directing α2-selectivity. MSG011 induced robust AMPK signalling in mouse primary hepatocytes and commonly used cell lines, and in most cases this occurred in the absence of changes in phosphorylation of the kinase activation loop residue α-Thr172, a classical marker of AMP-induced AMPK activity. These findings will guide future design of α2ß2-selective AMPK activators, that we hypothesise may avoid off-target complications associated with indiscriminate activation of AMPK throughout the body.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Type 2 , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , Mice , Muscle, Skeletal/metabolism , Phosphorylation
6.
Cell Rep ; 38(7): 110365, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172150

ABSTRACT

AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) are metabolic kinases that co-ordinate nutrient supply with cell growth. AMPK negatively regulates mTORC1, and mTORC1 reciprocally phosphorylates S345/7 in both AMPK α-isoforms. We report that genetic or torin1-induced loss of α2-S345 phosphorylation relieves suppression of AMPK signaling; however, the regulatory effect does not translate to α1-S347 in HEK293T or MEF cells. Dephosphorylation of α2-S345, but not α1-S347, transiently targets AMPK to lysosomes, a cellular site for activation by LKB1. By mass spectrometry, we find that α2-S345 is basally phosphorylated at 2.5-fold higher stoichiometry than α1-S347 in HEK293T cells and, unlike α1, phosphorylation is partially retained after prolonged mTORC1 inhibition. Loss of α2-S345 phosphorylation in endogenous AMPK fails to sustain growth of MEFs under amino acid starvation conditions. These findings uncover an α2-specific mechanism by which AMPK can be activated at lysosomes in the absence of changes in cellular energy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Lysosomes/metabolism , AMP-Activated Protein Kinase Kinases/metabolism , Amino Acid Sequence , Animals , Enzyme Activation , Female , Glycogen Synthase Kinase 3/chemistry , Glycogen Synthase Kinase 3/metabolism , HEK293 Cells , HeLa Cells , Humans , Isoenzymes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Phosphorylation , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism
7.
Nat Biotechnol ; 40(4): 576-584, 2022 04.
Article in English | MEDLINE | ID: mdl-34857927

ABSTRACT

Protein phosphorylation dynamically integrates environmental and cellular information to control biological processes. Identifying functional phosphorylation amongst the thousands of phosphosites regulated by a perturbation at a global scale is a major challenge. Here we introduce 'personalized phosphoproteomics', a combination of experimental and computational analyses to link signaling with biological function by utilizing human phenotypic variance. We measure individual subject phosphoproteome responses to interventions with corresponding phenotypes measured in parallel. Applying this approach to investigate how exercise potentiates insulin signaling in human skeletal muscle, we identify both known and previously unidentified phosphosites on proteins involved in glucose metabolism. This includes a cooperative relationship between mTOR and AMPK whereby the former directly phosphorylates the latter on S377, for which we find a role in metabolic regulation. These results establish personalized phosphoproteomics as a general approach for investigating the signal transduction underlying complex biology.


Subject(s)
Biological Phenomena , Phosphoproteins , Phosphoproteins/genetics , Phosphorylation , Proteomics/methods , Signal Transduction/physiology
8.
Cardiovasc Res ; 118(1): 282-294, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33386841

ABSTRACT

AIMS: Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. METHODS AND RESULTS: Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P<0.001). CONCLUSION: We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.


Subject(s)
Dynamins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydralazine/pharmacology , Mitochondria, Heart/drug effects , Mitochondrial Dynamics/drug effects , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Disease Models, Animal , Dynamins/metabolism , Female , HeLa Cells , Humans , Isolated Heart Preparation , Male , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Infarction/enzymology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Signal Transduction
9.
J Biol Chem ; 295(48): 16239-16250, 2020 11 27.
Article in English | MEDLINE | ID: mdl-32913128

ABSTRACT

The calcium-calmodulin-dependent protein kinase kinase-2 (CaMKK2) is a key regulator of cellular and whole-body energy metabolism. It is known to be activated by increases in intracellular Ca2+, but the mechanisms by which it is inactivated are less clear. CaMKK2 inhibition protects against prostate cancer, hepatocellular carcinoma, and metabolic derangements induced by a high-fat diet; therefore, elucidating the intracellular mechanisms that inactivate CaMKK2 has important therapeutic implications. Here we show that stimulation of cAMP-dependent protein kinase A (PKA) signaling in cells inactivates CaMKK2 by phosphorylation of three conserved serine residues. PKA-dependent phosphorylation of Ser495 directly impairs calcium-calmodulin activation, whereas phosphorylation of Ser100 and Ser511 mediate recruitment of 14-3-3 adaptor proteins that hold CaMKK2 in the inactivated state by preventing dephosphorylation of phospho-Ser495 We also report the crystal structure of 14-3-3ζ bound to a synthetic diphosphorylated peptide that reveals how the canonical (Ser511) and noncanonical (Ser100) 14-3-3 consensus sites on CaMKK2 cooperate to bind 14-3-3 proteins. Our findings provide detailed molecular insights into how cAMP-PKA signaling inactivates CaMKK2 and reveals a pathway to inhibit CaMKK2 with potential for treating human diseases.


Subject(s)
14-3-3 Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Signal Transduction , 14-3-3 Proteins/genetics , Animals , COS Cells , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Cell Line, Tumor , Chlorocebus aethiops , Cyclic AMP-Dependent Protein Kinases/genetics , Enzyme Activation , Humans
10.
Nat Metab ; 2(9): 873-881, 2020 09.
Article in English | MEDLINE | ID: mdl-32719536

ABSTRACT

Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules1. LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for ß-oxidation2-6. Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) ß1-containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the ß-subunit. ß1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK ß1-selective activators and promote LCFA oxidation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acyl Coenzyme A/physiology , Allosteric Regulation/physiology , AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/genetics , Animals , Biphenyl Compounds , Catalytic Domain , Esters , Isoenzymes/chemistry , Isoenzymes/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Mutation/genetics , Oxidation-Reduction , Palmitoyl Coenzyme A/metabolism , Phosphorylation , Pyrones/pharmacology , Thiophenes/pharmacology
11.
Mol Metab ; 41: 101048, 2020 11.
Article in English | MEDLINE | ID: mdl-32610071

ABSTRACT

OBJECTIVE: Glycogen is a major energy reserve in liver and skeletal muscle. The master metabolic regulator AMP-activated protein kinase (AMPK) associates with glycogen via its regulatory ß subunit carbohydrate-binding module (CBM). However, the physiological role of AMPK-glycogen binding in energy homeostasis has not been investigated in vivo. This study aimed to determine the physiological consequences of disrupting AMPK-glycogen interactions. METHODS: Glycogen binding was disrupted in mice via whole-body knock-in (KI) mutation of either the AMPK ß1 (W100A) or ß2 (W98A) isoform CBM. Systematic whole-body, tissue and molecular phenotyping was performed in KI and respective wild-type (WT) mice. RESULTS: While ß1 W100A KI did not affect whole-body metabolism or exercise capacity, ß2 W98A KI mice displayed increased adiposity and impairments in whole-body glucose handling and maximal exercise capacity relative to WT. These KI mutations resulted in reduced total AMPK protein and kinase activity in liver and skeletal muscle of ß1 W100A and ß2 W98A, respectively, versus WT mice. ß1 W100A mice also displayed loss of fasting-induced liver AMPK total and α-specific kinase activation relative to WT. Destabilisation of AMPK was associated with increased fat deposition in ß1 W100A liver and ß2 W98A skeletal muscle versus WT. CONCLUSIONS: These results demonstrate that glycogen binding plays critical roles in stabilising AMPK and maintaining cellular, tissue and whole-body energy homeostasis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Energy Metabolism/physiology , Glycogen/metabolism , AMP-Activated Protein Kinases/physiology , Animals , Female , Glucose/metabolism , Glycogen/physiology , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Phosphorylation , Protein Binding
13.
Bipolar Disord ; 22(8): 841-848, 2020 12.
Article in English | MEDLINE | ID: mdl-32216002

ABSTRACT

OBJECTIVES: Loss-of-function mutations in the gene encoding the calcium-calmodulin (Ca2+ -CaM)-dependent protein kinase kinase-2 (CaMKK2) enzyme are linked to bipolar disorder. Recently, a de novo arginine to cysteine (R311C) mutation in CaMKK2 was identified from a whole exome sequencing study of bipolar patients and their unaffected parents. The aim of the present study was to determine the functional consequences of the R311C mutation on CaMKK2 activity and regulation by Ca2+ -CaM. METHODS: The effects of the R311C mutation on CaMKK2 activity and Ca2+ -CaM activation were examined using a radiolabeled adenosine triphosphate (ATP) kinase assay. We performed immunoblot analysis to determine whether the R311C mutation impacts threonine-85 (T85) autophosphorylation, an activating phosphorylation site on CaMKK2 that has also been implicated in bipolar disorder. We also expressed the R311C mutant in CaMKK2 knockout HAP1 cells and used immunoblot analysis and an MTS reduction assay to study its effects on Ca2+ -dependent downstream signaling and cell viability, respectively. RESULTS: The R311C mutation maps to the conserved HRD motif within the catalytic loop of CaMKK2 and caused a marked reduction in kinase activity and Ca2+ -CaM activation. The R311C mutation virtually abolished T85 autophosphorylation in response to Ca2+ -CaM and exerted a dominant-negative effect in cells as it impaired the ability of wild-type CaMKK2 to initiate downstream signaling and maintain cell viability. CONCLUSIONS: The highly disruptive, loss-of-function impact of the de novo R311C mutation in human CaMKK2 provides a compelling functional rationale for being considered a potential rare monogenic cause of bipolar disorder.


Subject(s)
Bipolar Disorder/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium/metabolism , Calmodulin/metabolism , Bipolar Disorder/diagnosis , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calmodulin/genetics , Genetic Variation , Humans , Mutation , Phosphorylation , Signal Transduction/physiology
14.
FEBS J ; 287(10): 2087-2104, 2020 05.
Article in English | MEDLINE | ID: mdl-32196931

ABSTRACT

Meteorin-like (metrnl) is a recently identified adipomyokine that beneficially affects glucose metabolism; however, its underlying mechanism of action is not completely understood. We here show that the level of metrnl increases in vitro under electrical pulse stimulation and in vivo in exercised mice, suggesting that metrnl is secreted during muscle contractions. In addition, metrnl increases glucose uptake via the calcium-dependent AMPKα2 pathway in skeletal muscle cells and increases the phosphorylation of HDAC5, a transcriptional repressor of GLUT4, in an AMPKα2-dependent manner. Phosphorylated HDAC5 interacts with 14-3-3 proteins and sequesters them in the cytoplasm, resulting in the activation of GLUT4 transcription. An intraperitoneal injection of recombinant metrnl improved glucose tolerance in mice with high-fat-diet-induced obesity or type 2 diabetes, but not in AMPK ß1ß2 muscle-specific null mice. Metrnl improves glucose metabolism via AMPKα2 and is a promising therapeutic candidate for glucose-related diseases such as type 2 diabetes.


Subject(s)
AMP-Activated Protein Kinases/genetics , Diabetes Mellitus, Type 2/genetics , Histone Deacetylases/genetics , Nerve Growth Factors/genetics , Obesity/genetics , 14-3-3 Proteins/genetics , Animals , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Electric Stimulation , Glucose/genetics , Glucose/metabolism , Glucose Transporter Type 4/genetics , Humans , Insulin Resistance/genetics , Mice , Muscle Contraction/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Nerve Growth Factors/pharmacology , Obesity/drug therapy , Obesity/etiology , Obesity/pathology , Physical Conditioning, Animal , Recombinant Proteins/pharmacology
15.
Nat Metab ; 2(1): 41-49, 2020 01.
Article in English | MEDLINE | ID: mdl-31993556

ABSTRACT

Central to cellular metabolism and cell proliferation are highly conserved signalling pathways controlled by mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK)1,2, dysregulation of which are implicated in pathogenesis of major human diseases such as cancer and type 2 diabetes. AMPK pathways leading to reduced cell proliferation are well established and, in part, act through inhibition of TOR complex-1 (TORC1) activity. Here we demonstrate reciprocal regulation, specifically that TORC1 directly down-regulates AMPK signalling by phosphorylating the evolutionarily conserved residue Ser367 in the fission yeast AMPK catalytic subunit Ssp2, and AMPK α1Ser347/α2Ser345 in the mammalian homologs, which is associated with reduced phosphorylation of activation loop Thr172. Genetic or pharmacological inhibition of TORC1 signalling led to AMPK activation in the absence of increased AMP:ATP ratios; under nutrient stress conditions this was associated with growth limitation in both yeast and human cell cultures. Our findings reveal fundamental, bi-directional regulation between two major metabolic signalling networks and uncover new opportunity for cancer treatment strategies aimed at suppressing cell proliferation in the nutrient-poor tumor microenvironment.


Subject(s)
Adenylate Kinase/antagonists & inhibitors , Cell Proliferation/physiology , Mechanistic Target of Rapamycin Complex 1/physiology , Nutrients/metabolism , Stress, Physiological , Adenylate Kinase/chemistry , Adenylate Kinase/metabolism , Catalytic Domain , Diabetes Mellitus, Type 2/metabolism , Down-Regulation , Enzyme Activation , Humans , Mechanistic Target of Rapamycin Complex 1/drug effects , Neoplasms/metabolism , Phosphorylation , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Signal Transduction/physiology
16.
FASEB J ; 33(12): 14825-14840, 2019 12.
Article in English | MEDLINE | ID: mdl-31670977

ABSTRACT

ATPase inhibitory factor 1 (IF1) is an ATP synthase-interacting protein that suppresses the hydrolysis activity of ATP synthase. In this study, we observed that the expression of IF1 was up-regulated in response to electrical pulse stimulation of skeletal muscle cells and in exercized mice and healthy men. IF1 stimulates glucose uptake via AMPK in skeletal muscle cells and primary cultured myoblasts. Reactive oxygen species and Rac family small GTPase 1 (Rac1) function in the upstream and downstream of AMPK, respectively, in IF1-mediated glucose uptake. In diabetic animal models, the administration of recombinant IF1 improved glucose tolerance and down-regulated blood glucose level. In addition, IF1 inhibits ATP hydrolysis by ß-F1-ATPase in plasma membrane, thereby increasing extracellular ATP and activating the protein kinase B (Akt) pathway, ultimately leading to glucose uptake. Thus, we suggest that IF1 is a novel myokine and propose a mechanism by which AMPK and Akt contribute independently to IF1-mediated improvement of glucose tolerance impairment. These results demonstrate the importance of IF1 as a potential antidiabetic agent.-Lee, H. J., Moon, J., Chung, I., Chung, J. H., Park, C., Lee, J. O., Han, J. A., Kang, M. J., Yoo, E. H., Kwak, S.-Y., Jo, G., Park, W., Park, J., Kim, K. M., Lim, S., Ngoei, K. R. W., Ling, N. X. Y., Oakhill, J. S., Galic, S., Murray-Segal, L., Kemp, B. E., Mantzoros, C. S., Krauss, R. M., Shin, M.-J., Kim, H. S. ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt dual pathways.


Subject(s)
Glucose/metabolism , Myoblasts/metabolism , Proteins/metabolism , AMP-Activated Protein Kinase Kinases , Adenosine Triphosphate/metabolism , Adult , Animals , Cell Line , Cells, Cultured , Diabetes Mellitus, Type 2/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Male , Mice , Mice, Inbred C57BL , Protein Kinases/metabolism , Proteins/genetics , Proteins/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/therapeutic use , ATPase Inhibitory Protein
17.
EMBO J ; 38(24): e102578, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31381180

ABSTRACT

Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation. We identified > 22,000 phosphosites, revealing orthologous protein phosphorylation and overlapping signaling pathways regulated by exercise. This included two conserved phosphosites on stromal interaction molecule 1 (STIM1), which we validate as AMPK substrates. Furthermore, we demonstrate that AMPK-mediated phosphorylation of STIM1 negatively regulates store-operated calcium entry, and this is beneficial for exercise in Drosophila. This integrated cross-species resource of exercise-regulated signaling in human, mouse, and rat skeletal muscle has uncovered conserved networks and unraveled crosstalk between AMPK and intracellular calcium flux.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Calcium Channels/metabolism , Calcium/metabolism , Proteomics/methods , Stromal Interaction Molecule 1/metabolism , Animals , Calcium Signaling/physiology , Drosophila , Female , Humans , Male , Membrane Proteins , Mice , Muscle, Skeletal/metabolism , Phosphorylation , Protein Conformation , Rats , Rats, Wistar , Signal Transduction , Stromal Interaction Molecule 1/chemistry , Stromal Interaction Molecule 1/genetics
18.
J Biol Chem ; 293(23): 8874-8885, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29695504

ABSTRACT

Inhibition of the metabolic regulator AMP-activated protein kinase (AMPK) is increasingly being investigated for its therapeutic potential in diseases where AMPK hyperactivity results in poor prognoses, as in established cancers and neurodegeneration. However, AMPK-inhibitory tool compounds are largely limited to compound C, which has a poor selectivity profile. Here we identify the pyrimidine derivative SBI-0206965 as a direct AMPK inhibitor. SBI-0206965 inhibits AMPK with 40-fold greater potency and markedly lower kinase promiscuity than compound C and inhibits cellular AMPK signaling. Biochemical characterization reveals that SBI-0206965 is a mixed-type inhibitor. A co-crystal structure of the AMPK kinase domain/SBI-0206965 complex shows that the drug occupies a pocket that partially overlaps the ATP active site in a type IIb inhibitor manner. SBI-0206965 has utility as a tool compound for investigating physiological roles for AMPK and provides fresh impetus to small-molecule AMPK inhibitor therapeutic development.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , Benzamides/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/metabolism , Animals , Benzamides/chemistry , COS Cells , Chlorocebus aethiops , HEK293 Cells , Humans , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry
19.
Cell Chem Biol ; 25(6): 728-737.e9, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29657085

ABSTRACT

The AMP-activated protein kinase (AMPK) αßγ heterotrimer regulates cellular energy homeostasis with tissue-specific isoform distribution. Small-molecule activation of skeletal muscle α2ß2 AMPK complexes may prove a valuable treatment strategy for type 2 diabetes and insulin resistance. Herein, we report the small-molecule SC4 is a potent, direct AMPK activator that preferentially activates α2 complexes and stimulates skeletal muscle glucose uptake. In parallel with the term secretagog, we propose "importagog" to define a substance that induces or augments cellular uptake of another substance. Three-dimensional structures of the glucose importagog SC4 bound to activated α2ß2γ1 and α2ß1γ1 complexes reveal binding determinants, in particular a key interaction between the SC4 imidazopyridine 4'-nitrogen and ß2-Asp111, which provide a design paradigm for ß2-AMPK therapeutics. The α2ß2γ1/SC4 structure reveals an interaction between a ß2 N-terminal α helix and the α2 autoinhibitory domain. Our results provide a structure-function guide to accelerate development of potent, but importantly tissue-specific, ß2-AMPK therapeutics.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Benzoates/pharmacology , Glucose/metabolism , Muscle, Skeletal/drug effects , Pyridines/pharmacology , Small Molecule Libraries/pharmacology , Animals , Benzoates/chemical synthesis , Benzoates/chemistry , COS Cells , Cell Line , Chlorocebus aethiops , Crystallography, X-Ray , Enzyme Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Molecular Structure , Muscle, Skeletal/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Rats , Rats, Wistar , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
20.
Cell Death Discov ; 4: 39, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29531836

ABSTRACT

Human induced pluripotent stem cells (iPSCs) are a valuable tool for studying the cardiac developmental process in vitro, and cardiomyocytes derived from iPSCs are a putative cell source for personalized medicine. Changes in mitochondrial morphology have been shown to occur during cellular reprogramming and pluripotent stem cell differentiation. However, the relationships between mitochondrial dynamics and cardiac mesoderm commitment of iPSCs remain unclear. Here we demonstrate that changes in mitochondrial morphology from a small granular fragmented phenotype in pluripotent stem cells to a filamentous reticular elongated network in differentiated cardiomyocytes are required for cardiac mesodermal differentiation. Genetic and pharmacological inhibition of the mitochondrial fission protein, Drp1, by either small interfering RNA or Mdivi-1, respectively, increased cardiac mesoderm gene expression in iPSCs. Treatment of iPSCs with Mdivi-1 during embryoid body formation significantly increased the percentage of beating embryoid bodies and expression of cardiac-specific genes. Furthermore, Drp1 gene silencing was accompanied by increased mitochondrial respiration and decreased aerobic glycolysis. Our findings demonstrate that shifting the balance of mitochondrial morphology toward fusion by inhibition of Drp1 promoted cardiac differentiation of human iPSCs with a metabolic shift from glycolysis towards oxidative phosphorylation. These findings suggest that Drp1 may represent a new molecular target for future development of strategies to promote the differentiation of human iPSCs into cardiac lineages for patient-specific cardiac regenerative medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...