Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
ChemSusChem ; 17(12): e202301489, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38441519

ABSTRACT

Electron donor (D)-electron acceptor (A) type conjugated polymers present bright prospects as dopant-free hole-transporting materials (HTMs) for perovskite solar cells (PVSCs). Most of the reported D-A polymeric HTMs contain equivalent amounts of D and A units, while the appropriate excess proportion of D units could optimize the aggregation state of polymer chains and improve the hole transport properties of the polymers. Herein, a non-equivalent D-A copolymerization strategy was utilized to develop three indacenodithiophene-benzotriazole-based polymeric HTMs for PVSCs, named as F-10, F-15, and F-20, and the equivalent D-A polymer F-00 was studied in parallel. Effects of D : A ratio on the hole transport properties of these D-A type polymeric HTMs, including energy level, molecular stacking, hole mobility, and surface morphology, were investigated by theoretical simulation and test analysis. F-15 performed best due to the appropriate D : A ratio, endowing the PVSCs a champion power conversion efficiency of 20.37 % with high stability, which confirms the fine-tuning D : A ratio via non-equivalent D-A copolymerization strategy is very helpful to construct D-A type polymeric HTMs for high-performance PVSCs.

2.
Angew Chem Int Ed Engl ; 63(13): e202400742, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38319193

ABSTRACT

Tautomers coexisting in an equilibrium system have significant potential for regulating luminescent properties because of their structural differences. However, separating and stabilizing tautomers at room temperature is a considerable challenge. In this study, it is found that hydrogen-bonded organic frameworks (HOFs) composed of Br- anions can effectively separate and stabilize two proton-transfer tautomers of triarylformamidinium bromide: namely, the nitrogen cation (BA-N) and carbon cation (BA-C). The BA-N crystal consisting of a dense anionic HOF and parallelly aligned organic cations exhibits green thermally activated delayed fluorescence and red room-temperature phosphorescence (RTP). The BA-C crystal contains acetone molecules that induce an antiparallel arrangement of the organic cations to form a loose HOF, producing blue prompt fluorescence and green RTP. Interestingly, switching of the HOFs between BA-N and BA-C can be achieved through the uptake and release of acetone, thereby dynamically adjusting multiple luminescent properties. Consequently, the HOF crystals can be used for the highly sensitive and specific sensing of acetone with a detection limit of 66.74 ppm. This study not only stabilizes tautomeric luminescent materials at room temperature, but also provides a new method for constructing smart HOFs with a sensitive response to a stimulus.

3.
J Colloid Interface Sci ; 660: 735-745, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271809

ABSTRACT

The rapid development of wearable and portable electronic devices prompts the ever-growing demand for wearable, flexible, and light-weight power sources. In this work, a MXene/GNS/PPy@PEDOT/Cotton nanocomposite electrode with excellent electrochemical performances was fabricated using cotton fabric as a substrate. Poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) was coated on the cotton fabric to obtain a conductive substrate through a controllable dip-drying coating process, while a nanocomposite consisting of MXene, Graphene nanoscroll (GNS), and polypyrrole (PPy) was directly synthesized and deposited on the PEDOT:PSS-modified cotton fabric via a one-step in situ polymerization method. The resultant MXene/GNS/PPy@PEDOT/Cotton electrode delivers excellent electrochemical performances including an ultra-high areal capacitance of 4877.2 mF·cm-2 and stable cycling stability with 90 % capacitance retention after 3000 cycles. Moreover, the flexible symmetrical supercapacitor (FSC) assembled with the MXene/GNS/PPy@PEDOT/Cotton electrodes demonstrates a prominent areal capacitance (2685.28 mF·cm-2 at a current density of 1 mA·cm-2) and a high energy density (322.15 µWh·cm-2 at a power density of 0.46 mW·cm-2). In addition, the application of the FSC for wearable electronic devices was demonstrated.

4.
Adv Mater ; 35(18): e2211992, 2023 May.
Article in English | MEDLINE | ID: mdl-36807946

ABSTRACT

2D organic-inorganic hybrid perovskites (OIHPs) show obvious advantages in the field of optoelectronics due to their high luminescent stability and good solution processability. However, the thermal quenching and self-absorption of excitons caused by the strong interaction between the inorganic metal ions lead to a low luminescence efficiency of 2D perovskites. Herein, a 2D Cd-based OIHP phenylammonium cadmium chloride (PACC) with a weak red phosphorescence (ΦP  < 6%) at 620 nm and a blue afterglow is reported. Interestingly, the Mn-doped PACC exhibits very strong red emission with nearly 200% quantum yield and 15 ms lifetime, thus resulting in a red afterglow. The experimental data prove that the doping of Mn2+ not only induces the multiexciton generation (MEG) process of the perovskite, avoiding the energy loss of inorganic excitons, but also promotes the Dexter energy transfer from organic triplet excitons to inorganic excitons, thus realizing the superefficient red-light emission of Cd2+ . This work suggests that guest metal ions can induce host metal ions to realize MEG in 2D bulk OIHPs, which provides a new idea for the development of optoelectronic materials and devices with ultrahigh energy utilization.

5.
Angew Chem Int Ed Engl ; 61(35): e202207104, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35674723

ABSTRACT

Synergism between covalent and non-covalent bonds is employed to fix an organic phosphor guest in a rigid inorganic framework, simulating the stiffening effect seen in the glassy state and realizing efficient and ultralong room-temperature phosphorescence (RTP). Twelve heavy-atom-free composites have been obtained through introducing arylboric or arylcarboxylic acid derivatives into the inorganic boric acid matrix by solid-phase synthesis. Owing to the stiffening effect of multiple bonds, all the composites show highly efficient and persistent RTP of guest molecules with a quantum yield ranging from 39.8 % to ca. 100 % and a lifetime up to 8.74 s, which results in a 55 s afterglow visible to the naked eye after exposure to a portable UV lamp. Interestingly, it is found that the substitution position and quantity of carboxyl in the guest have a great influence on the phosphorescent properties, and that the heavy-atom effect is invalid in such host-guest hybrid systems. The 100 g grade composite is easily prepared because of the solvent-free, green, and simple synthesis method. These results provide an important way for the development of RTP materials with ultrahigh quantum yield and ultralong lifetime, as well as their practical applications in the fields of anti-counterfeiting and information storage, among others.

6.
ACS Appl Mater Interfaces ; 14(12): 14703-14711, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35290015

ABSTRACT

Herein, two maleimide derivatives substituted by Br (DBM) and I (DIM) with a two-dimensional (2D) layered structure are found to have highly efficient red room-temperature phosphorescence (RTP) at 660 nm in solid state, which is independent of their morphology (crystal, powder, and film). The red RTP of DBM and DIM is closely related to the synergism of nπ-ct-π* transitions and the 2D halogen-bonded network. Interestingly, the red RTP can be excited by visible light of 500 nm, which should be ascribed to the forbidden absorption from the ground state to the triplet state activated in the layered halogen-bonded framework. Due to the rich intermolecular interactions in the rigid layered structure, the red RTP of DBM is very stable under water or external force stimulation. Notably, Hg(II) and Cd(II) ions in a pure aqueous solution result in an opposite change in the RTP intensity of the DBM film. The detection limit of Hg(II) ion is as low as 2.5 × 10-5 nM, lesser than all reported values. The above results not only provide a new idea for the design of simple and efficient red RTP materials but also make it possible to develop solid-state phosphorescent probes for toxic heavy metal ions in environmental sewage with high sensitivity and selectivity.

7.
Angew Chem Int Ed Engl ; 61(11): e202116511, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35015323

ABSTRACT

Herein, new types of zero-dimensional (0D) perovskites (PA6InCl9 and PA4InCl7) with blue room-temperature phosphorescence (RTP) were obtained from InCl3 and aniline hydrochloride. These are highly sensitive to external light and force stimuli. The RTP quantum yield of PA6InCl9 can be enhanced from 25.2 % to 42.8 % upon illumination. Under mechanical force, PA4InCl7 exhibits a phase transform to PA6InCl9, thus boosting ultralong RTP with a lifetime up to 1.2 s. Furthermore, white and orange pure RTP with a quantum yield close to 100 % can be realized when Sb3+ was introduced into PA6InCl9. The white pure phosphorescence with a color-rendering index (CRI) close to 90 consists of blue RTP of PA6InCl9 and orange RTP of Sb3+ . Thus, this work not only overcomes long-standing problems of low quantum yield and short lifetime of blue RTP, but also obtains high-efficiency white RTP. It provides a feasible method to realize near-unity quantum efficiency and has great application potential in the fields of optical devices and smart materials.

8.
Chem Sci ; 12(43): 14451-14458, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34880996

ABSTRACT

Organic-inorganic hybrid metal halides have attracted intensive attention because of their unique electronic structure and solution processability. They have a rigid micro/nano-structure and heavy atom effect, which has obvious advantages in promoting organic room temperature phosphorescence (RTP). However, the toxicity of heavy metals has limited their further development. Herein, two metal-free 2D layered ammonium halides, homopiperonylammonium bromide and chloride (HLB and HLC), are described for the first time. Their layered structure consists of rigid inorganic ammonium halide laminates and neatly stacked organic layers. The rigid laminates and external heavy atom effect of halogen atoms make HLB and HLC produce green RTP. When phosphor guests with different triplet energies are doped into HLB, HLC, or phenylethylamine salt hosts, effective full-color and even white ultra-long RTP with phosphorescence quantum yield up to 18.7% and lifetime up to 1.7 s is realized through energy transfer between the host and guest. Due to the simple solution synthesis, 10 g-level doped layered organic ammonium halides with the same phosphorescence properties can be easily obtained. The information ink based on these doped halides and non-toxic ethanol solvent can form various patterns on filter paper. The fluorescence and phosphorescence of these patterns are sensitive to the excitation wavelength and acid-base vapor. Consequently, they can be applied to multiple complex anti-counterfeiting and fluorescence/phosphorescence dual-mode chemical sensors.

9.
J Phys Chem Lett ; 12(3): 1040-1045, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33470819

ABSTRACT

Herein, an organic fluorophore termed NLAC is introduced into 2D hybrid perovskites with wide band gap (>3.54 eV) to give a green emission with quantum yield up to 81%. The highly efficient luminescence is ascribed to avoiding the aggregation of NLAC and formation of an inorganic free exciton which is easy to thermally quench. On this basis, a new strategy to generate efficient white emission with afterglow has been proposed by codoping a short-wavelength fluorophore and long-wavelength phosphor into 2D organic-inorganic hybrid perovskites (OIHPs). As a result, a single-component white-light-emitting material PEPC-3N based on NLAC with CIE of (0.33, 0.36) and quantum yield up to 43% can be obtained. Interestingly, PEPC-3N shows a dual-color organic afterglow and excitation-wavelength-dependent emission, consequently forming a switch between green fluorescence and yellow afterglow. This unique performance indicates PEPC-3N has huge potential in afterglow WLEDs and information storage.

10.
ACS Appl Mater Interfaces ; 12(1): 1419-1426, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31833758

ABSTRACT

Organic afterglow materials (OAMs) with a lifetime longer than 0.1 s have recently received much attention for their fascinating properties meeting the critical requirements of applications in newly emerged technologies. However, the development of OAMs lags behind for their low luminescence efficiency. Usually, enhancing the phosphorescence efficiency of organic materials causes a short lifetime. Here, we report two kinds of OAMs, two-dimensional (2D) layered organic-inorganic hybrid zinc bromides (PEZB-NTA and PEZB-BPA), obtained in an environmentally friendly ethanol solvent by a low-temperature solution method. They display highly efficient and persistent luminescence in air in both crystals and thin films with phosphorescence quantum yields up to 42% in crystals and 27% in films. For OAMs, the two quantum yields are the highest values ever reported for crystals and films. Due to the excellent crystalline and film-forming ability, PEZB-NTA and PEZB-BPA in ethanol can be used as inks to construct patterns on various rigid and flexible substrates, including paper, iron, plastic, marble, tin foil, and cloth. Consequently, the novel OAMs show great application prospects in the fields of anti-counterfeiting and information storage because of their economic synthesis, solution processing, and easy operation.

11.
J Phys Condens Matter ; 32(5): 055301, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31600737

ABSTRACT

Using density functional theory and nonequilibrium Green's function method, the spin-dependent electronic transport properties of six transition metal porphyrin molecules (VP, CrP, MnP, FeP, CoP, and NiP), which are linked to gold electrodes through the thiolated ethynyl groups, are investigated. Two different linkage modes (beta linkage and meso linkage) of the substituted ethynyl groups on the porphyrin macrocycle are considered. The results show that the linkage mode of ethynyl groups plays an important role on the spin transport properties of the molecular junctions and the beta linkage is more favorable for the spin filtering efficiency of current than the meso linkages. The spin-up and spin-down energy levels show the different evolutions which is responsible for the difference of spin filtering efficiency between the two linkage modes. The computational results of total current show that the meso-linked molecular junctions have the better conductive performances than the beta-linked ones which may be caused by the different electronic transport paths.

12.
ACS Appl Mater Interfaces ; 11(46): 43441-43451, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31668060

ABSTRACT

All-polymer solar cells (all-PSCs) can offer unique merits of high morphological stability to thermal and mechanical stress. To realize their full potential as flexible or wearable devices, it is highly desirable that the all-PSCs can be fabricated from a green solvent with simple post-treatment to avoid thermal annealing on the flexible substrate. This posed a severe challenge on material design to tune their properties with suitable solubility, aggregation, and morphology. To address this challenge, here, a simple bicomponent random approach on a D-A-type polymer donor was developed by just varying the D-A molar ratio. Under this approach, a series of new random polymers PBDTa-TPDb with different molar ratios of the D component of 2D-benzo[1,2-b:4,5-b']dithiophene (BDT) and A component of thieno[3,4-c]pyrrole-4,6-dione (TPD) were designed and synthesized. The energy levels, light absorption, solubility, and packing structure of random donors PBDTa-TPDb were found to vary substantially with the various D-A molar ratios. The devices based on PBDTa-TPDb/P(NDI2HD-T) were fabricated to explore the synergistic effects of the processing solvent and composition of D-A-type random polymers. The results show that nanoscale morphology, balanced miscibility/crystallinity of blend, and photovoltaic properties could be rationally optimized by tuning the composition of random donors. As a result, as-cast all-PSC-based optimal donor PBDT5-TPD4 achieves the best power conversion efficiency (PCE) of 8.20% processed from a green solvent, which performs better than that the reference polymer (PCE: 6.41%). This efficiency is the highest value for all-PSCs from BDT-TPD-based donors. Moreover, the optimized devices were relatively insensitive to the thickness of the active layer and exhibited good stability.

13.
Nanotechnology ; 31(8): 085201, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31658446

ABSTRACT

Top-emitting microcavity polymer light-emitting diodes (TMPLEDs) are of great significance for active matrix PLED displays with high color purity. However, the complex device structures of highly efficient microcavity organic light-emitting diodes fabricated by the full vapor deposition technology are not suitable for solution-processed PLEDs. Solution-processed TMPLEDs with simple device structures are promising candidates for large-area, mass production display techniques. In this work, three strategies were used to apply microcavity into PLEDs: (1) double Ag electrodes performed as the mirrors of cavity, instead of a multi-layer Bragg reflector, which simplified the device structure and fabrication process; (2) three solution-processed functional layers were specially designed for avoiding the inter-infiltration between the different solutions and to improve the interface contacts; (3) high order microcavities were utilized according to the optical simulation results, in which thick EMLs benefited from thickness control and reproductivity. As a result, the full-color emission including pure red, green, blue was realized, and quasi-white light was also achieved from a single polymer emitting material. The achievement of color purity always requires the sacrifice of part of the current efficiency due to the spectra narrowing, while the higher current efficiency of green TMPLED (10.08 cd A-1) compared to that of non-cavity PLED (~8.60 cd A-1) cast a light on future improvements.

14.
ChemSusChem ; 12(21): 4824-4831, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31496072

ABSTRACT

Interface engineering of TiO2 nanoparticles (NPs)-based perovskite solar cells (PVSCs) is often necessary to facilitate the extraction and transport of charge carriers. In this work, poly[{9,9-bis[3'-(N,N-dimethyl)propyl]-2,7-fluorene}-alt-2,7-(9,9-dioctylfluorene)] (PFN) and polystyrene (PS) are demonstrated to be effective surface modifiers of the TiO2 NPs electron-transporting layer in n-i-p PVSCs. The low-cost insulating polymer PS performs better than the PFN conjugated polymer owing to its high film quality, low surface energy and insulating characteristics. A peak power conversion efficiency (PCE) of 15.09 % with an open-circuit voltage (VOC ) of 1.05 V and a PCE of 17.13 % with an ultrahigh VOC of 1.18 V is achieved with TiO2 NPs/PS-based PVSCs using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and spiro-OMeTAD, respectively, as the hole-transporting material.

15.
ChemSusChem ; 12(6): 1155-1161, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30633449

ABSTRACT

Perylene diimide-based small molecules are widely used as intermediates of liquid crystals, owing to their high planarity and electron mobility. In this study, tetrachloroperylene diimide (TCl-PDI) was used as a small-molecule replacement for TiO2 as electron-transporting material (ETM) for planar perovskite solar cells (PVSCs). Among hole-transporting materials (HTMs) for PVSCs, poly(3-hexylthiophene) (P3HT) gives the devices the highest stability and reproducibility. Therefore, PVSCs with the structure of indium tin oxide (ITO)/ETM/perovskite/P3HT/MoO3 /Ag were used to evaluate the performances of new ETMs. A reference device with compact TiO2 and P3HT gave a reasonable power conversion efficiency (PCE) of 12.78 %, whereas the PVSC with TCl-PDI as ETM gave an enhanced PCE of 14.73 %, which is among the highest reported values for PVSCs with undoped P3HT as the HTM. Moreover, TCl-PDI-based devices displayed higher stability than those based on compact TiO2 , owing to the superior perovskite quality.

16.
Micromachines (Basel) ; 9(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-30424029

ABSTRACT

The spin-dependent electron transport in the ferrocene-based molecular junctions, in which the molecules are 1,3-substituted and 1,3'-substituted ethynyl ferrocenes, respectively, is studied by the theoretical simulation with nonequilibrium Green's function and density functional theory. The calculated results suggest that the substitution position of the terminal ethynyl groups has a great effect on the spin-dependent current-voltage properties and the spin filtering efficiency of the molecular junctions. At the lower bias, high spin filtering efficiency is found in 1,3'-substituted ethynyl ferrocene junction, which suggests that the spin filtering efficiency is also dependent on the bias voltage. The different spin-dependent transport properties for the two molecular junctions originate from their different evolutions of spin-up and spin-down energy levels.

17.
ACS Appl Mater Interfaces ; 10(18): 15980-15987, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29668256

ABSTRACT

Two-dimensional (2D) white-light-emitting hybrid perovskites (WHPs) are promising active materials for single-component white-light-emitting diodes (WLEDs) driven by UV. However, the reported WHPs exhibit low quantum yields (≤9%) and low color rendering index (CRI) values less than 85, which does not satisfy the demand of solid-state lighting applications. In this work, we report a series of mixed-halide 2D layered WHPs (C6H5C2H4NH3)2PbBr xCl4- x (0 < x < 4) obtained from the phenethylammonium cation. Unlike the reported WHPs including (C6H5C2H4NH3)2PbCl4, the mixed-halide perovskites display morphology-dependent white emission for the different extents of self-absorption. Additionally, the amount of Br has a huge influence on the photophysical properties of mixed-halide WHPs. With the increasing content of Br, the quantum yields of WHPs increase gradually from 0.2 to 16.9%, accompanied by tunable color temperatures ranging from 4000 K ("warm" white light) to 7000 K ("cold" white light). When applied to the WLEDs, the mixed-halide perovskite powders exhibit tunable white electroluminescent emission with very high CRI of 87-91.

18.
Chem Sci ; 9(48): 8975-8981, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30627411

ABSTRACT

Regardless of rapid development of organic room-temperature phosphorescence (RTP) originating from phosphors in crystals, highly efficient and persistent RTP from common fluorophores is very rare. Herein, 1,8-naphthalimide (NI), a common organic fluorophore, is doped into organic cations of 2D layered organic/inorganic hybrid perovskites (OIHPs) to yield thin films and powders with yellow RTP of NI in air. The triplet excitons of NI are mainly derived from Wannier excitons of inorganic perovskite through energy transfer (ET) for films, and from singlet excitons of NI through intersystem crossing (ISC) for powder. Consequently, the quantum yield (Φ P), lifetime (τ) and color of RTP can be tuned by changing the fluorophore and halide in the perovskites, as well as their solid morphology. A white emission, comprising the blue one from the perovskite and yellow RTP (Φ P = 25.6%, τ = 6.3 ms) from NI, is obtained in Br-based OIHPs in powder. Cl-based OIHPs exhibit fluorescence/phosphorescence dual emission in thin films, and yellow afterglow phosphorescence in powders (Φ P = 56.1%, τ = 35 ms). The unique performance of the OIHPs with RTP can make them widely applicable in the field of information technology as security ink, and white and afterglow LEDs as single luminescent materials.

19.
J Hazard Mater ; 345: 1-9, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29128721

ABSTRACT

Adsorption is recognized as one of the most promising technologies applied to remove heavy metals from contaminated water. However, the adsorption efficiency often decreases because of the aggregation and loss of adsorbents. Herein, a novel adsorbent was synthesized by intercalation ethylenediaminetetraacetic acid (EDTA) into layered double hydroxides (LDH) and subsequent encapsulated into PAN polymer matrix using electrospinning. The synthesized electrospun nanofiber membrane (MgAl-EDTA-LDH@PAN) was found to combine the advantages of LDH@PAN nanofiber membrane (high surface area, easy to separate, free from aggregation and loss) and EDTA (powerful chelating agent). The adsorption performance of the MgAl-EDTA-LDH@PAN was evaluated using Cu(II) as target metals by varying experimental conditions such as pH, contact time, initial adsorbent dosage, and temperature. The maximum adsorption capacity of MgAl-EDTA-LDH@PAN was 120.77mg/g with the initial Cu(II) concentrations ranging from 0.6 to 40mg/L. MgAl-EDTA-LDH@PAN was also used in real industrial contaminated water treatment, and the final effluent was approximate to class-I criteria of the National Wastewater Discharge Standard of China. (GB 8978-1996). In addition, Cu K-edge XAS and XPS analyses were applied for unraveling the adsorptive performance of MgAl-EDTA-LDH@PAN by revealing the molecular-level mechanism of Cu(II) uptake.

20.
Chemistry ; 24(2): 322-326, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29120520

ABSTRACT

Herein we report on four diarylmaleimides based on 3- or 2-substituted benzothiophene (M3S or M2S) and benzofuran (M3O or M2O), which show very different emission properties: aggregation-caused quenching (ACQ), aggregation-induced emission (AIE), and dual-state strong emission (DSE) in both solution and solid states. Their emission color in the solid state can be adjusted from green-yellow into red. M2O displays strong red solid-state emission at 630 nm with a quantum yield of 46.3 %. Single-crystal X-ray diffraction analysis confirms that their large distinction in solid-state emission originates from their different packing structures: hydrogen-bonded organic frameworks (HOFs) for M3S, a staggered structure for M3O, J-aggregation for M2S, and weak H-aggregation for M2O. HOF of M3S and weak H-aggregation of M2O make them produce inverse-type piezochromic fluorescence: blueshifted "turn-on" and redshifted "turn-off" emission, respectively. These results provide new insight in fluorescence manipulated by subtle structure modification.

SELECTION OF CITATIONS
SEARCH DETAIL
...