Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(14): 17812-17820, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557002

ABSTRACT

Two-dimensional metal-organic nanosheets (MONs) have emerged as attractive alternatives to their three-dimensional metal-organic framework (MOF) counterparts for heterogeneous catalysis due to their greater external surface areas and higher accessibility of catalytically active sites. Zr MONs are particularly prized because of their chemical stability and high Lewis and Brønsted acidities of the Zr clusters. Herein, we show that careful control over modulated self-assembly and exfoliation conditions allows the isolation of the first example of a two-dimensional nanosheet wherein Zr6 clusters are linked by dicarboxylate ligands. The hxl topology MOF, termed GUF-14 (GUF = Glasgow University Framework), can be exfoliated into monolayer thickness hns topology MONs, and acid-induced removal of capping modulator units yields MONs with enhanced catalytic activity toward the formation of imines and the hydrolysis of an organophosphate nerve agent mimic. The discovery of GUF-14 serves as a valuable example of the undiscovered MOF/MON structural diversity extant in established metal-ligand systems that can be accessed by harnessing the power of modulated self-assembly protocols.

2.
J Phys Chem Lett ; 15(5): 1500-1506, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38299540

ABSTRACT

Efficient prediction of sampling-intensive thermodynamic properties is needed to evaluate material performance and permit high-throughput materials modeling for a diverse array of technology applications. To alleviate the prohibitive computational expense of high-throughput configurational sampling with density functional theory (DFT), surrogate modeling strategies like cluster expansion are many orders of magnitude more efficient but can be difficult to construct in systems with high compositional complexity. We therefore employ minimal-complexity graph neural network models that accurately predict and can even extrapolate to out-of-train distribution formation energies of DFT-relaxed structures from an ideal (unrelaxed) crystallographic representation. This enables the large-scale sampling necessary for various thermodynamic property predictions that may otherwise be intractable and can be achieved with small training data sets. Two exemplars, optimizing the thermodynamic stability of low-density high-entropy alloys and modulating the plateau pressure of hydrogen in metal alloys, demonstrate the power of this approach, which can be extended to a variety of materials discovery and modeling problems.

3.
Nat Commun ; 15(1): 909, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291342

ABSTRACT

Low temperature ionic conducting materials such as OH- and H+ ionic conductors are important electrolytes for electrochemical devices. Here we show the discovery of mixed OH-/H+ conduction in ceramic materials. SrZr0.8Y0.2O3-δ exhibits a high ionic conductivity of approximately 0.01 S cm-1 at 90 °C in both water and wet air, which has been demonstrated by direct ammonia fuel cells. Neutron diffraction confirms the presence of OD bonds in the lattice of deuterated SrZr0.8Y0.2O3-δ. The OH- ionic conduction of CaZr0.8Y0.2O3-δ in water was demonstrated by electrolysis of both H218O and D2O. The ionic conductivity of CaZr0.8Y0.2O3-δ in 6 M KOH solution is around 0.1 S cm-1 at 90 °C, 100 times higher than that in pure water, indicating increased OH- ionic conductivity with a higher concentration of feed OH- ions. Density functional theory calculations suggest the diffusion of OH- ions relies on oxygen vacancies and temporarily formed hydrogen bonds. This opens a window to discovering new ceramic ionic conducting materials for near ambient temperature fuel cells, electrolysers and other electrochemical devices.

4.
Chem Sci ; 14(13): 3531-3540, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37006672

ABSTRACT

AMX3 compounds are structurally diverse, a notable example being the post-perovskite structure which adopts a two-dimensional framework with corner- and edge-sharing octahedra. Few molecular post-perovskites are known and of these, none have reported magnetic structures. Here we report the synthesis, structure and magnetic properties of molecular post-perovskites: CsNi(NCS)3, a thiocyanate framework, and two new isostructural analogues CsCo(NCS)3 and CsMn(NCS)3. Magnetisation measurements show that all three compounds undergo magnetic order. CsNi(NCS)3 (Curie temperature, T C = 8.5(1) K) and CsCo(NCS)3 (T C = 6.7(1) K) order as weak ferromagnets. On the other hand, CsMn(NCS)3 orders as an antiferromagnet (Néel temperature, T N = 16.8(8) K). Neutron diffraction data of CsNi(NCS)3 and CsMn(NCS)3, show that both are non-collinear magnets. These results suggest molecular frameworks are fruitful ground for realising the spin textures required for the next generation of information technology.

5.
J Colloid Interface Sci ; 634: 369-378, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36542967

ABSTRACT

HYPOTHESIS: Ice accretion on component surfaces often causes severe impacts or accidents. Liquid-infused surfaces (LIS) have drawn much attention as icephobic materials for ice mitigation in recent years due to their outstanding icephobicity. However, the durability of LIS constructions remains a big challenge, including mechanical vulnerability and rapid depletion of lubricants. The practical applications of LIS materials are significantly restrained, and the full potential of LIS for ice prevention has yet to be demonstrated. EXPERIMENTS: A universal approach was proposed to introduce microporous metallic scaffolds in the LIS construction to increase the applicability and durability, and to prompt the potential of LIS for ice mitigation. Microporous Ni scaffolds were chosen to integrate with polydimethylsiloxane modified by silicone oil addition. FINDINGS: The new LIS construction demonstrated significantly improved durability in icing/de-icing cyclic test, and it also offered a solution for the rapid oil depletion by restraining the deformation of the matrix material. Low ice adhesion strength could be maintained via a micro-crack initiation mechanism. The results indicated that the multi-phase LIS construction consisting of microporous Ni scaffolds effectively addressed the shackles of the icephobicity deterioration of LIS materials, confirming a new design strategy for the R&D of icephobic surfaces.

6.
Small ; 18(33): e2202661, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35863913

ABSTRACT

The family of van der Waals (vdW) materials is large and diverse with applications ranging from electronics and optoelectronics to catalysis and chemical storage. However, despite intensive research, there remains significant knowledge-gaps pertaining to their properties and interactions. One such gap is the interaction between these materials and hydrogen, a potentially vital future energy vector and ubiquitous processing gas in the semiconductor industry. This work reports on the interaction of hydrogen with the vdW semiconductor SnS2 , where molecular hydrogen (H2 ) and H-ions induce a controlled chemical conversion into semiconducting-SnS or to ß-Sn. This hydrogen-driven reaction is facilitated by the different oxidation states of Sn and is successfully applied to form SnS2 /SnS heterostructures with uniform layers, atomically flat interfaces and well-aligned crystallographic axes. This approach is scalable and offers a route for engineering materials at the nanoscale for semiconductor technologies based on the earth-abundant elements Sn and S, a promising result for a wide range of potential applications.

7.
Chemistry ; 28(48): e202201364, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35647658

ABSTRACT

Breathing behaviour in metal-organic frameworks (MOFs), the distinctive transformation between a porous phase and a less (or non) porous phase, often controls the uptake of guest molecules, endowing flexible MOFs with highly selective gas adsorptive properties. In highly flexible topologies, breathing can be tuned by linker modification, which is typically achieved pre-synthetically using functionalised linkers. Herein, it was shown that MIL-88A(Sc) exhibits the characteristic flexibility of its topology, which can be tuned by 1) modifying synthetic conditions to yield a formate-buttressed analogue that is rigid and porous; and 2) postsynthetic bromination across the alkene functionality of the fumarate ligand, generating a product that is rigid but non-porous. In addition to providing different methodologies for tuning the flexibility and breathing behaviour of this archetypal MOF, it was shown that bromination of the formate-bridged analogue results in an identical material, representing a rare example of two different MOFs being postsynthetically converted to the same end product.

8.
Angew Chem Int Ed Engl ; 61(34): e202207289, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35686675

ABSTRACT

We herein report the preparation of a series of hexaphenylbenzene (HPB)-based deep blue-emissive metallacages via multicomponent coordination-driven self-assembly. These metallacages feature prismatic structures with HPB derivatives as the faces and tetracarboxylic ligands as the pillars, as evidenced by NMR, mass spectrometry and X-ray diffraction analysis. Light-harvesting systems were further constructed by employing the metallacages as the donor and a naphthalimide derivative (NAP) as the acceptor, owing to their good spectral overlap. The judiciously chosen metallacage serves as the antenna, providing the suitable energy to excite the non-emissive NAP, and thus resulting in bright emission for NAP in the solid state. This study provides a type of HPB-based multicomponent emissive metallacage and explores their applications as energy donors to light up non-emissive fluorophores in the solid state, which will advance the development of emissive metallacages as useful luminescent materials.


Subject(s)
Fluorescent Dyes , Luminescence , Magnetic Resonance Spectroscopy
9.
Chem Sci ; 13(21): 6291-6296, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35733896

ABSTRACT

An unprecedented zirconium metal-organic framework featuring a T-shaped benzimidazole strut was constructed and employed as a sponge-like material for selective absorption of macrocyclic guests. The neutral benzimidazole domain of the as-synthesized framework can be readily protonated and fully converted to benzimidazolium. Mechanical threading of [24]crown-8 ether wheels onto recognition sites to form pseudorotaxanes was evidenced by solution nuclear magnetic resonance, solid-state fluorescence, and infrared spectroscopy. Selective absorption of [24]crown-8 ether rather than its dibenzo counterpart was also observed. Further study reveals that this binding process is reversible and acid-base switchable. The success of docking macrocyclic guests in crystals via host-guest interactions provides an alternative route to complex functional materials with interpenetrated structures.

10.
JACS Au ; 2(4): 819-826, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35557762

ABSTRACT

Proton conduction is vital for living systems to execute various physiological activities. The understanding of its mechanism is also essential for the development of state-of-the-art applications, including fuel-cell technology. We herein present a bottom-up strategy, that is, the self-assembly of Cage-1 and -2 with an identical chemical composition but distinct structural features to provide two different supramolecular conductors that are ideal for the mechanistic study. Cage-1 with a larger cavity size and more H-bonding anchors self-assembled into a crystalline phase with more proton hopping pathways formed by H-bonding networks, where the proton conduction proceeded via the Grotthuss mechanism. Small cavity-sized Cage-2 with less H-bonding anchors formed the crystalline phase with loose channels filled with discrete H-bonding clusters, therefore allowing for the translational diffusion of protons, that is, vehicle mechanism. As a result, the former exhibited a proton conductivity of 1.59 × 10-4 S/cm at 303 K under a relative humidity of 48%, approximately 200-fold higher compared to that of the latter. Ab initio molecular dynamics simulations revealed distinct H-bonding dynamics in Cage-1 and -2, which provided further insights into potential proton diffusion mechanisms. This work therefore provides valuable guidelines for the rational design and search of novel proton-conducting materials.

11.
Mater Horiz ; 8(12): 3377-3386, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34665190

ABSTRACT

The synthesis of phase pure metal-organic frameworks (MOFs) - network solids of metal clusters connected by organic linkers - is often complicated by the possibility of forming multiple diverse phases from one metal-ligand combination. For example, there are at least six Fe-terephthalate MOFs reported to date, with many examples in the literature of erroneous assignment of phase based on diffraction data alone. Herein, we show that modulated self-assembly can be used to influence the kinetics of self-assembly of Fe-terephthalate MOFs. We comprehensively assess the effect of addition of both coordinating modulators and pH modulators on the outcome of syntheses, as well as probing the influence of the oxidation state of the Fe precursor (oxidation modulation) and the role of the counteranion on the phase(s) formed. In doing so, we shed light on the thermodynamic landscape of this phase system, uncover mechanistics of modulation, provide robust routes to phase pure materials, often as single crystals, and introduce two new Fe-terephthalate MOFs to an already complex system. The results highlight the potential of modulated self-assembly to bring precision control and new structural diversity to systems that have already received significant study.

12.
Chem Sci ; 12(10): 3516-3525, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-34163625

ABSTRACT

We report four new A-site vacancy ordered thiocyanate double double perovskites, , A = K+, NH4 +, CH3(NH3)+ (MeNH3 +) and C(NH2)3 + (Gua+), including the first examples of thiocyanate perovskites containing organic A-site cations. We show, using a combination of X-ray and neutron diffraction, that the structure of these frameworks depends on the A-site cation, and that these frameworks possess complex vacancy-ordering patterns and cooperative octahedral tilts distinctly different from atomic perovskites. Density functional theory calculations uncover the energetic origin of these complex orders and allow us to propose a simple rule to predict favoured A-site cation orderings for a given tilt sequence. We use these insights, in combination with symmetry mode analyses, to show that these complex orders suggest a new route to non-centrosymmetric perovskites, and mean this family of materials could contain excellent candidates for piezo- and ferroelectric applications.

13.
Angew Chem Int Ed Engl ; 60(22): 12293-12297, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33724636

ABSTRACT

The construction of solid-state fluorescent materials with high quantum yield and good processability is of vital importance in the preparation of organic light-emitting devices. Herein, a series of tetraphenylethylene (TPE)-based multicomponent emissive metallacages are prepared by the coordination-driven self-assembly of tetra-(4-pyridylphenyl)ethylene, cis-Pt(PEt3 )2 (OTf)2 and tetracarboxylic ligands. These metallacages exhibit good emission both in solution and in the solid state because the coordination bonds and aggregation restrict the molecular motions of TPE synergistically, which suppresses the non-radiative decay of these metallacages. Impressively, one of the metallacages achieves very high fluorescence quantum yield (ΦF =88.46 %) in the solid state, which is further used as the coatings of a blue LED bulb to achieve white-light emission. The study not only provides a general method to the preparation of TPE-based metallacages but also explores their applications as solid-state fluorescent materials, which will promote the future design and applications of metallacages as useful emissive devices.

14.
J Am Chem Soc ; 142(44): 18763-18768, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33085462

ABSTRACT

Here we report two highly emissive perylene diimide (PDI)-based metallacages and explore their complexation with polycyclic aromatic hydrocarbons, such as pyrene, triphenylene, and perylene. The fluorescence quantum yields of metallacages exceed 90% and their binding constants with perylene can reach as high as 2.41 × 104 M-1 in acetonitrile. These features enable further tuning of the emission of the host-guest complexes to obtain white-light emission based on the complementary orange emission of the metallacages and the blue emission of perylene. Moreover, owing to the huge differences of their quantum yields in solution and in the solid state, the host-guest complexes are successfully employed for information encryption. This study offers a general approach for the construction of emissive metallacages and explores their application for information encryption.

15.
Molecules ; 25(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481752

ABSTRACT

The emergence of the hydrogen economy requires development in the storage, generation and sensing of hydrogen. The indium selenide ( γ -InSe) van der Waals (vdW) crystal shows promise for technologies in all three of these areas. For these applications to be realised, the fundamental interactions of InSe with hydrogen must be understood. Here, we present a comprehensive experimental and theoretical study on the interaction of γ -InSe with hydrogen. It is shown that hydrogenation of γ -InSe by a Kaufman ion source results in a marked quenching of the room temperature photoluminescence signal and a modification of the vibrational modes of γ -InSe, which are modelled by density functional theory simulations. Our experimental and theoretical studies indicate that hydrogen is incorporated into the crystal preferentially in its atomic form. This behaviour is qualitatively different from that observed in other vdW crystals, such as transition metal dichalcogenides, where molecular hydrogen is intercalated in the vdW gaps of the crystal, leading to the formation of "bubbles" for hydrogen storage.


Subject(s)
Hydrogen/chemistry , Hydrogen Bonding , Indium/chemistry , Nonlinear Optical Microscopy , Quantum Theory , Thermodynamics
16.
J Am Chem Soc ; 142(5): 2592-2600, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31940435

ABSTRACT

It is quite challenging to realize fluorescence resonance energy transfer (FRET) between two chromophores with specific positions and directions. Herein, through the self-assembly of two carefully selected fluorescent ligands via metal-coordination interactions, we prepared two tetragonal prismatic platinum(II) cages with a reverse FRET process between their faces and pillars. Bearing different responses to external stimuli, these two emissive ligands are able to tune the FRET process, thus making the cages sensitive to solvents, pressure, and temperature. First, these cages could distinguish structurally similar alcohols such as n-butanol, t-butanol, and i-butanol. Furthermore, they showed decreased emission with bathochromic shifts under high pressure. Finally, they exhibited a remarkable ratiometric response to temperature over a wide range (223-353 K) with high sensitivity. For example, by plotting the ratio of the maximum emission (I600/I480) of metallacage 4b against the temperature, the slope reaches 0.072, which is among the highest values for ratiometric fluorescent thermometers reported so far. This work not only offers a strategy to manipulate the FRET efficiency in emissive supramolecular coordination complexes but also paves the way for the future design and preparation of smart emissive materials with external stimuli responsiveness.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Platinum/chemistry , Fluorescent Dyes/chemistry , Magnetic Resonance Spectroscopy/methods
17.
J Phys Chem Lett ; 11(1): 40-47, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31814416

ABSTRACT

An open question in the metal hydride community is whether there are simple, physics-based design rules that dictate the thermodynamic properties of these materials across the variety of structures and chemistry they can exhibit. While black box machine learning-based algorithms can predict these properties with some success, they do not directly provide the basis on which these predictions are made, therefore complicating the a priori design of novel materials exhibiting a desired property value. In this work we demonstrate how feature importance, as identified by a gradient boosting tree regressor, uncovers the strong dependence of the metal hydride equilibrium H2 pressure on a volume-based descriptor that can be computed from just the elemental composition of the intermetallic alloy. Elucidation of this simple structure-property relationship is valid across a range of compositions, metal substitutions, and structural classes exhibited by intermetallic hydrides. This permits rational targeting of novel intermetallics for high-pressure hydrogen storage (low-stability hydrides) by their descriptor values, and we predict a known intermetallic to form a low-stability hydride (as confirmed by density functional theory calculations) that has not yet been experimentally investigated.

18.
Nat Chem ; 11(7): 622-628, 2019 07.
Article in English | MEDLINE | ID: mdl-31086300

ABSTRACT

Defect engineering of metal-organic frameworks (MOFs) offers promising opportunities for tailoring their properties to specific functions and applications. However, determining the structures of defects in MOFs-either point defects or extended ones-has proved challenging owing to the difficulty of directly probing local structures in these typically fragile crystals. Here we report the real-space observation, with sub-unit-cell resolution, of structural defects in the catalytic MOF UiO-66 using a combination of low-dose transmission electron microscopy and electron crystallography. Ordered 'missing linker' and 'missing cluster' defects were found to coexist. The missing-linker defects, reconstructed three-dimensionally with high precision, were attributed to terminating formate groups. The crystallization of the MOF was found to undergo an Ostwald ripening process, during which the defects also evolve: on prolonged crystallization, only the missing-linker defects remained. These observations were rationalized through density functional theory calculations. Finally, the missing-cluster defects were shown to be more catalytically active than their missing-linker counterparts for the isomerization of glucose to fructose.

19.
J Am Chem Soc ; 141(20): 8346-8357, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31017428

ABSTRACT

Phase control in the self-assembly of metal-organic frameworks (MOFs) is often a case of trial and error; judicious control over a number of synthetic variables is required to select the desired topology and control features such as interpenetration and defectivity. Herein, we present a comprehensive investigation of self-assembly in the Fe-biphenyl-4,4'-dicarboxylate system, demonstrating that coordination modulation can reliably tune between the kinetic product, noninterpenetrated MIL-88D(Fe), and the thermodynamic product, two-fold interpenetrated MIL-126(Fe). Density functional theory simulations reveal that correlated disorder of the terminal anions on the metal clusters results in hydrogen bonding between adjacent nets in the interpenetrated phase and this is the thermodynamic driving force for its formation. Coordination modulation slows self-assembly and therefore selects the thermodynamic product MIL-126(Fe), while offering fine control over defectivity, inducing mesoporosity, but electron microscopy shows MIL-88D(Fe) persists in many samples despite not being evident by diffraction. Interpenetration control is also demonstrated using the 2,2'-bipyridine-5,5'-dicarboxylate linker; it is energetically prohibitive for it to adopt the twisted conformation required to form the interpenetrated phase, although multiple alternative phases are identified due to additional coordination of Fe cations to its N donors. Finally, we introduce oxidation modulation-the use of metal precursors in different oxidation states from that found in the final MOF-to kinetically control self-assembly. Combining coordination and oxidation modulation allows the synthesis of pristine MIL-126(Fe) with BET surface areas close to the predicted maximum for the first time, suggesting that combining the two may be a powerful methodology for the controlled self-assembly of high-valent MOFs.

20.
J Chem Phys ; 148(22): 224501, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29907054

ABSTRACT

Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density functional theory (DFT) is preferred for systems with a large number of molecules. However, traditional DFT cannot adequately account for medium to long range correlations which are necessary for modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and nonlocal van der Waals functionals have attempted to address this weakness with a varying degree of success. In this work, we predict the VLE of argon and assess the performance of several density functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10 functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3 functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar, MP2 performs well for the density and structural features of the first solvation shell in the liquid phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...