Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chronic Obstr Pulm Dis ; 11(1): 101-105, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37963303

ABSTRACT

Introduction: In 2019, the Beta-Blockers for the Prevention of Acute Exacerbations of Chronic Obstructive Pulmonary Disease study (BLOCK-COPD) evaluated the effect of metoprolol on exacerbation risk and mortality in a COPD population without indications for beta-blocker use. We hypothesized that an imaging metric of coronary artery disease (CAD), the coronary artery calcium (CAC) score, would predict exacerbation risk and identify a differential response to metoprolol treatment. Methods: The study population includes participants in the BLOCK-COPD study from multiple study sites. Participants underwent clinically indicated thoracic computed tomography (CT) scans ± 12 months from enrollment. The Weston scoring system quantified CAC. Adjusted Cox proportional hazards models evaluated for associations between CAC and time to exacerbation. Results: Data is included for 109 participants. The mean CAC score was 5.1±3.7, and 92 participants (84%) had CAC scores greater than 0. Over a median (interquartile range) follow-up time of 350 (280 to 352) days, there were 61 mild exacerbations and 19 severe/very severe exacerbations. No associations were found between exacerbations of any severity and CAC>0 or total CAC. Associations were observed between total CAC and CAC>0 in the left circumflex (LCx) and time to exacerbation of any severity (adjusted hazard ratio [aHR]=1.39, confidence interval [CI]: 1.08-1.79, p=0.01) and (aHR=1.96, 95% CI: 1.04-3.70, p=0.04), respectively. Conclusions: CAD is a prevalent comorbidity in COPD accounting for significant mortality. Our study confirms the high prevalence of CAD using the CAC score; however, we did not discover an association between CAC and exacerbation risk. We did find novel associations between CAC in the LCx and exacerbation risk which warrant further investigation in larger cohorts.

2.
BMC Pulm Med ; 23(1): 434, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946165

ABSTRACT

RATIONALE: Pulmonary hypertension (PH) in COPD confers increased risk of exacerbations (ECOPD). Electrocardiogram (ECG) indicators of PH are prognostic both in PH and COPD. In the Beta-Blockers for the Prevention of Acute Exacerbations of COPD (BLOCK-COPD) trial, metoprolol increased risk of severe ECOPD through unclear mechanisms. OBJECTIVE: We evaluated whether an ECG indicator of PH, P-pulmonale, would be associated with ECOPD and whether participants with P-pulmonale randomized to metoprolol were at higher risk of ECOPD and worsened respiratory symptoms given the potential detrimental effects of beta-blockers in PH. METHODS: ECGs of 501 participants were analyzed for P-pulmonale (P wave enlargement in lead II). Cox proportional hazards models evaluated for associations between P-pulmonale and time to ECOPD (all and severe) for all participants and by treatment assignment (metoprolol vs. placebo). Linear mixed-effects models evaluated the association between treatment assignment and P-pulmonale on change in symptom scores (measured by CAT and SOBQ). RESULTS: We identified no association between P-pulmonale and risk of any ECOPD or severe ECOPD. However, in individuals with P-pulmonale, metoprolol was associated with increased risk for ECOPD (aHR 2.92, 95% CI: 1.45-5.85). There was no association between metoprolol and ECOPD in individuals without P-pulmonale (aHR 1.01, 95% CI: 0.77-1.31). Individuals with P-pulmonale assigned to metoprolol experienced worsening symptoms (mean increase of 3.95, 95% CI: 1.32-6.58) whereas those assigned to placebo experienced a mean improvement in CAT score of -2.45 (95% CI: -0.30- -4.61). CONCLUSIONS: In individuals with P-pulmonale, metoprolol was associated with increased exacerbation risk and worsened symptoms. These findings may explain the findings observed in BLOCK-COPD.


Subject(s)
Metoprolol , Pulmonary Disease, Chronic Obstructive , Humans , Adrenergic beta-Antagonists/adverse effects , Disease Progression , Metoprolol/adverse effects , Morbidity , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/drug therapy
3.
Ann Am Thorac Soc ; 19(10): 1642-1649, 2022 10.
Article in English | MEDLINE | ID: mdl-35363600

ABSTRACT

Rationale: The BLOCK COPD (ß-Blockers for the Prevention of Acute Exacerbations of Chronic Obstructive Pulmonary Disease) study found that metoprolol was associated with a higher risk of severe exacerbation. Objectives: To determine the mechanism underlying these results, we compared changes in lung function over the course of the study between treatment groups and evaluated whether baseline bronchodilator response or early reduction in forced expiratory volume in 1 second (FEV1) or forced vital capacity (FVC) was associated with exacerbation risk. Methods: We compared changes in lung function (FEV1 and FVC) over the treatment period between treatment groups using linear mixed-effect models. Cox proportional hazards models were used to evaluate the association between baseline bronchodilator responsiveness (FEV1, FVC, and combined FEV1 and FVC), early post-randomization (14 d) change in lung function, and the interaction between treatment assignment and these measures with risk of any or severe or very severe exacerbations. Negative binomial models were used to evaluate the relationship between bronchodilator responsiveness, the interaction between bronchodilator responsiveness and treatment assignment, and exacerbation rate. Results: Over the 336-day treatment period, individuals in the metoprolol group had a significantly greater decrease in logarithmic FEV1 from baseline to visit on Day 28 than individuals in the placebo group. Individuals in the metoprolol group had a significantly greater decrease in FVC from baseline to visits on Days 14 and 28, and also a significantly greater decrease in logarithmic FVC from baseline to visits on Days 42 and 112 than individuals in the placebo group. There were no associations between early lung function reduction or interactions between lung function reduction and treatment assignment and time to any or severe or very severe exacerbations. There were no interactions between treatment arm and baseline bronchodilator responsiveness measures on risk or rate of exacerbations. However, those with baseline FVC bronchodilator responsiveness had a higher rate of severe or very severe exacerbations (adjusted rate ratio, 1.62; 95% confidence interval, 1.04-2.48). Conclusions: Metoprolol was associated with reduced lung function during the early part of the treatment period, but these effects were modest and did not persist. Early lung function reduction and baseline bronchodilator responsiveness did not interact with the treatment arm to predict exacerbations; however, baseline FVC bronchodilator responsiveness was associated with a 60% higher rate of severe or very severe exacerbations. Clinical trial registered with www.clinicaltrials.gov (NCT02587351).


Subject(s)
Bronchodilator Agents , Pulmonary Disease, Chronic Obstructive , Forced Expiratory Volume , Humans , Lung , Metoprolol/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Vital Capacity/physiology
4.
Chronic Obstr Pulm Dis ; 9(2): 226-236, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35403415

ABSTRACT

Introduction: Autonomic dysfunction is common in chronic obstructive pulmonary disease (COPD), and worse autonomic function may be a marker of risk for acute exacerbations of COPD (AECOPD). Heart rate variability (HRV) is a measure of autonomic function. Our objective was to test whether lower (worse) HRV is a risk factor for AECOPD. Methods: We measured standard deviation of normal RR intervals (SDNN) and root mean square of successive RR interval differences (RMSSD) on 10-second electrocardiograms (ECGs) performed at screening and day 42 in participants in the Beta Blockers for the Prevention of Acute Exacerbations of COPD trial ( BLOCK-COPD), a placebo-controlled trial of metoprolol for prevention of AECOPD. We used Cox-proportional hazards models to test if these HRV measures were associated with risk of any AECOPD, and separately, hospitalized AECOPD. We tested associations using baseline HRV measures and incorporating HRV measures from day 42 as a time-varying covariate. We also tested for interactions with metoprolol assignment. Results: Of 532 trial participants, 529 (forced expiratory volume in 1 second [FEV1 ]41 ± 16.3 % predicted) were included in this analysis. We did not find a significant association between HRV measures and risk of AECOPD when all participants were analyzed together. There was a significant interaction between RMSSD and assignment to metoprolol on time to first hospitalized AECOPD; in the placebo group greater RMSSD was associated with a lower risk of hospitalized AECOPD (adjusted hazard ratio0.71, 95% confidence interval: 0.52 to 0.96, per 10 ms increase) but there was no association in the metoprolol group. Conclusions: Autonomic dysfunction as measured by HRV may be a risk factor for AECOPD. Future studies should analyze longer HRV recordings and their performance in broader samples of people with COPD, including those on beta-blockers.

5.
J Biopharm Stat ; 31(6): 852-867, 2021 11 02.
Article in English | MEDLINE | ID: mdl-35129422

ABSTRACT

Multisource exchangeability models (MEMs), a BayeTsian approach for dynamically integrating information from multiple clinical trials, are a promising approach for gaining efficiency in randomized controlled trials. When the supplementary trials are considerably larger than the primary trial, care must be taken when integrating supplementary data to avoid overwhelming the primary trial. In this paper, we propose "capping priors," which controls the extent of dynamic borrowing by placing an a priori cap on the effective supplemental sample size. We demonstrate the behavior of this technique via simulation, and apply our method to four randomized trials of very low nicotine content cigarettes.


Subject(s)
Research Design , Bayes Theorem , Computer Simulation , Humans , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...