Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Rheum Dis ; 83(5): 564-575, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38272667

ABSTRACT

OBJECTIVE: Erythropoietin (EPO) known as an erythrocyte-stimulating factor is increased in patients with rheumatoid arthritis (RA). Nevertheless, the function of EPO in the process of RA and relative mechanism needs to be further clarified. METHODS: The level of EPO in serum and synovial fluid from patients with RA and healthy controls was determined by . Collagen-induced arthritis (CIA) mice were constructed to confirm the role of EPO on RA pathogenesis. Differentially expressed genes (DEGs) of EPO-treated fibroblast-like synoviocyte (FLS) were screened by transcriptome sequencing. The transcription factor of neuraminidase 3 (NEU3) of DEGs was verified by double luciferase reporting experiment, DNA pulldown, electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR (qPCR) assay. RESULTS: The overexpression of EPO was confirmed in patients with RA, which was positively associated with Disease Activity Score 28-joint count. Additionally, EPO intervention could significantly aggravate the joint destruction in CIA models. The upregulation of NEU3 was screened and verified by transcriptome sequencing and qPCR in EPO-treated FLS, and signal transducer and activator of transcription 5 was screened and verified to be the specific transcription factor of NEU3. EPO upregulates NEU3 expression via activating the Janus kinase 2 (JAK2)-STAT5 signalling pathway through its receptor EPOR, thereby to promote the desialylation through enhancing the migration and invasion ability of FLS, which is verified by JAK2 inhibitor and NEU3 inhibitor. CONCLUSION: EPO, as a proinflammatory factor, accelerates the process of RA through transcriptional upregulation of the expression of NEU3 by JAK2/STAT5 pathway.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Erythropoietin , Neuraminidase , Synoviocytes , Animals , Humans , Mice , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Proliferation , Cells, Cultured , Erythropoietin/metabolism , Fibroblasts/metabolism , Neuraminidase/metabolism , STAT5 Transcription Factor/metabolism , Synovial Membrane/metabolism , Synoviocytes/metabolism
2.
Rheumatology (Oxford) ; 63(3): 826-836, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37326830

ABSTRACT

OBJECTIVE: Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS: Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS: We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION: CCCTC-binding factor is the specific transcription factor of ß-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.


Subject(s)
Aminosalicylic Acids , Arthritis, Rheumatoid , Galactosides , Transcription Factors , Animals , Mice , Humans , CCCTC-Binding Factor , Anti-Citrullinated Protein Antibodies , Chromatography, Liquid , Tandem Mass Spectrometry , Mice, Knockout , Sialyltransferases/genetics
3.
Biomed Pharmacother ; 168: 115666, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832409

ABSTRACT

Rheumatoid arthritis (RA) is the most common chronic autoimmune disease worldwide. Although progress has been made in RA treatment in recent decades, remission cannot be effectively achieved for a considerable proportion of RA patients. Thus, novel potential targets for therapeutic strategies are needed. Semaphorin 5A (SEMA5A) plays a pivotal role in RA progression by facilitating pannus formation, and it is a promising therapeutic target. In this study, we sought to develop an antibody treatment strategy targeting SEMA5A and evaluate its therapeutic effect using a collagen-induced arthritis (CIA) model. We generated SYD12-12, a fully human SEMA5A blocking antibody, through phage display technology. SYD12-12 intervention effectively inhibited angiogenesis and aggressive phenotypes of RA synoviocytes in vitro and dose-dependently inhibited synovial hyperplasia, pannus formation, bone destruction in CIA mice. Notably, SYD12-12 also improved the Treg/Th17 imbalance in CIA mice. We confirmed through immunofluorescence and molecular docking that SYD12-12 integrated with the unique TSP-1 domain of SEMA5A. In conclusion, we developed and characterized a fully human SEMA5A-blocking antibody for the first time. SYD12-12 effectively alleviated disease progression in CIA mice by inhibiting pannus formation and improving the Treg/Th17 imbalance, demonstrating its potential for the RA treatment.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Semaphorins , Synoviocytes , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Arthritis, Experimental/chemically induced , Arthritis, Rheumatoid/drug therapy , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...