Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 2(5): 1500050, 2015 05.
Article in English | MEDLINE | ID: mdl-27980940

ABSTRACT

Prelithiated, electrospun α-Fe2O3 nanofibers display an exceptional cycleability when it is paired with commercial LiMn2O4 cathode in full-cell assembly. The performance of such α-Fe2O3 nanofibers is mainly due to the presence of unique morphology with porous structure, appropriate mass balance, and working potential. Also, synthesis technique cannot be ruled out for the performance.

2.
Nanoscale ; 6(15): 8926-34, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24965606

ABSTRACT

We report for the first time the synthesis and extraordinary performance of a high voltage spinel LiNi(0.5)Mn(1.5)O4 fiber cathode in all one dimensional (1D) architecture. Structural and morphological features are analyzed by various characterization techniques. Li-insertion/extraction properties are evaluated in a half-cell assembly (Li/LiNi(0.5)Mn(1.5)O4) and subsequently in full-cell configuration with an anatase TiO2 fiber anode. In both half- and full-cell assemblies, gelled polyvinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) is used as the separator-cum-electrolyte. All the one dimensional components used for fabricating Li-ion cells are prepared by a simple and scalable electrospinning technique. The full-cell, LiNi(0.5)Mn(1.5)O4/gelled PVdF-HFP/TiO2 delivered the reversible capacity of ∼ 102 mA h g(-1) at 0.1 C rate with an operating potential of ∼ 2.8 V. Excellent rate capability and stable cycling profiles are noted for such a full-cell assembly with a capacity retention of ∼ 86% after 400 cycles.

3.
ChemSusChem ; 7(7): 1858-63, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24961606

ABSTRACT

This is the first report of the utilization of TiNb2 O7 as an insertion-type anode in a lithium-ion hybrid electrochemical capacitor (Li-HEC) along with an activated carbon (AC) counter electrode derived from a coconut shell. A simple and scalable electrospinning technique is adopted to prepare one-dimensional TiNb2 O7 nanofibers that can be characterized by XRD with Rietveld refinement, SEM, and TEM. The lithium insertion properties of such electrospun TiNb2 O7 are evaluated in the half-cell configuration (Li/TiNb2 O7 ) and it is found that the reversible intercalation of lithium (≈3.45 mol) is feasible with good capacity retention characteristics. The Li-HEC is constructed with an optimized mass loading based on the electrochemical performance of both the TiNb2 O7 anode and AC counter electrode in nonaqueous media. The Li-HEC delivers very high energy and power densities of approximately 43 Wh kg(-1) and 3 kW kg(-1) , respectively. Furthermore, the AC/TiNb2 O7 Li-HEC delivers a good cyclability of 3000 cycles with about 84% of the initial value.


Subject(s)
Electric Capacitance , Electric Power Supplies , Lithium/chemistry , Niobium/chemistry , Oxides/chemistry , Titanium/chemistry , Electrodes
4.
Chem Asian J ; 9(3): 878-82, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24449337

ABSTRACT

We report the extraordinary performance of carbon-coated sodium super ion conductor (NASICON)-type LiTi2 (PO4 )3 as an ideal host matrix for reversible insertion of both Li and Na ions. The NASICON-type compound was prepared by means of a Pechini-type polymerizable complex method and was subsequently carbon coated. Several characterization techniques such as XRD, thermogravimetric analysis (TGA), field-emission (FE) SEM, TEM, and Raman analysis were used to study the physicochemical properties. Both guest species underwent a two-phase insertion mechanism during the charge/discharge process that was clearly evidenced from galvanostatic and cyclic voltammetric studies. Unlike that of Li (≈1.5 moles of Li), Na insertion exhibits better reversibility (≈1.59 moles of Na) while experiencing a slightly higher capacity fade (≈8 % higher than Li) and polarization (780 mV) than Li. However, excellent rate capability profiles were noted for Na insertion relative to its counterpart Li. Overall, the Na insertion properties were found to be superior relative to Li insertion, which makes carbon-coated NASICON-type LiTi2 (PO4 )3 hosts attractive for the development of next-generation batteries.

5.
Nanoscale ; 5(21): 10636-45, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24057339

ABSTRACT

We successfully demonstrated the performance of novel, one-dimensional electrospun nanofibers as cathode, anode and separator-cum-electrolyte in full-cell Li-ion configuration. The cathode, LiMn2O4 delivered excellent cycle life over 800 cycles at current density of 150 mA g(-1) with capacity retention of ~93% in half-cell assembly (Li/LiMn2O4). Under the same current rate, the anode, anatase phase TiO2, rendered ~77% initial reversible capacity after 500 cycles in half-cell configuration (Li/TiO2). Gelled electrospun PVdF-HFP exhibits liquid-like conductivity of ~3.2 mS cm(-1) at ambient temperature conditions (30 °C). For the first time, a full-cell is fabricated with enitrely electrospun one-dimensional materials by adjusting the mass loading of cathode with respect to anode in the presence of gelled PVdF-HFP membrane as a separator-cum-electrolyte. Full-cell LiMn2O4|gelled PVdF-HFP|TiO2 delivered good capacity characteristics and excellent cyclability with an operating potential of ∼2.2 V at a current density of 150 mA g(-1). Under harsh conditions (16 C rate), the full-cell showed a very stable capacity behavior with good calendar life. This clearly showed that electrospinning is an efficient technique for producing high performance electro-active materials to fabricate a high performance Li-ion assembly for commercialization without compromising the eco-friendliness and raw material cost.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Manganese/chemistry , Nanofibers/chemistry , Oxides/chemistry , Electrochemical Techniques , Electrodes , Electrolytes/chemistry , Ions/chemistry , Polymers/chemistry , Temperature , Titanium/chemistry
6.
ChemSusChem ; 6(12): 2240-4, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23939711

ABSTRACT

One HEC of a material: The use of trigol-reduced graphene oxide nanosheets as cathode material in hybrid lithium-ion electrochemical capacitors (Li-HECs) results in an energy density of 45 Wh kg(-1) ; much enhanced when compared to similar devices. The mass loading of the active materials is optimized, and the devices show good cycling performance. Li-HECs employing these materials outperform other supercapacitors, making them attractive for use in power sources.


Subject(s)
Electric Power Supplies , Graphite/chemistry , Lithium/chemistry , Nanostructures/chemistry , Electrodes , Polyethylene Glycols/chemistry
7.
Chem Commun (Camb) ; 49(59): 6677-9, 2013 Jul 28.
Article in English | MEDLINE | ID: mdl-23774756

ABSTRACT

We report the extraordinary lithium storage performance of porous LiMn2O4 hollow nanofibers synthesized by electrospinning technique. The electrospun LiMn2O4 hollow nanofibers retained 87% of initial reversible capacity after 1250 cycles at the 1 C rate. Further, excellent cycling profiles at 55 °C and cubic spinel to tetragonal phase transformation are also noted.

SELECTION OF CITATIONS
SEARCH DETAIL
...