Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 11(4): nwae063, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623453

ABSTRACT

The Chinese Bayan Obo deposit is a world-class rare earth element (REE) deposit with considerable niobium (Nb) and iron (Fe) resources. A complete genetic understanding on all metals is fundamental for establishing genetic models at Bayan Obo. With extensive research being focused on REE enrichment, the timing and controls of Nb enrichment remain unresolved at Bayan Obo, which is mainly due to the challenges in dating, i.e. multistage thermal events, fine-grained minerals with complex textures and the rare occurrence of uranium-enriched minerals with mature dating methods. Based on robust geological and petrographic frameworks, here we conducted ion probe uranium-lead (U-Pb) dating of ferrocolumbite to unravel the timing, hence the genesis of Nb mineralization. Three types of hydrothermal ferrocolumbites-key Nb-bearing minerals-are identified based on their textures and mineral assemblages. They yield U-Pb ages of 1312 ± 47 Ma (n = 99), 438 ± 7 Ma (n = 93), and 268 ± 5 Ma (n = 19), respectively. In line with deposit geology, we tentatively link the first, second and third stage Nb mineralization to Mesoproterozoic carbonatite magmatism, ubiquitous early Paleozoic hydrothermal activity, and Permian granitic magmatism, respectively. While quantifying the contribution of metal endowment from each stage requires further investigation, our new dates highlight that multi-stage mineralization is critical for Nb enrichment at Bayan Obo, which may also have implications for the enrichment mechanism of Nb in REE deposits in general.

2.
ACS Omega ; 7(4): 3634-3638, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35128271

ABSTRACT

Dating mafic igneous rocks (silica-undersaturated) is difficult for the lack of suitable minerals such as zircons (ZrSiO4) commonly found in the sialic rocks such as granites. In this regard, baddeleyite (ZrO2) has been long recognized as the most important mineral to serve as a geochronometer for dating silica-undersaturated igneous rocks. However, separating baddeleyite is difficult due to its small grain size, typical tabular morphology, and low abundance in samples. The standard water-based separation technique requires kilogram-sized samples and usually has a very low recovery rate. In this study, a new separation method based on the different solubilities of the minerals within HF + HCl + HNO3 reagents was developed to achieve a high recovery of baddeleyite. With ∼19 g of diabase powder, the new method recovers 150-160 baddeleyite grains of 10-100 µm length and 4-50 µm width, an order of magnitude improvement over the water-based separation method, which typically recovers 11-12 similarly sized baddeleyite grains out of the ∼19 g sample. Subsequent secondary ion mass spectrometry U-Pb analyses demonstrate that the baddeleyite grains recovered by the new separation method keep the U-Pb system closed, indicating no Pb loss during acid treatment. Thus, this new method enables the most efficient baddeleyite recovery from gram-sized rocks and is anticipated to greatly contribute to the geochronological study of silica-unsaturated mafic rocks.

3.
Front Chem ; 8: 605646, 2020.
Article in English | MEDLINE | ID: mdl-33344421

ABSTRACT

Secondary ion mass spectrometry (SIMS) is one of the most important analytical tools for geochronology, especially for zircon U-Pb dating. Due to its advantages in spatial resolution and analytical precision, SIMS is the preferred option for multi-spot analyses on single zircon grain with complex structures. However, whether or how much the relative positions of multiple analytical spots on one zircon grain affect the U-Pb age accuracy is an important issue that has been neglected by most researchers. In this study, we carried out a series of investigation on the influence of relative analytical position during zircon U-Pb age analyses, using Cameca IMS 1280-HR instrument. The results demonstrated a significant influence on the second spot, with apparent U-Pb age deviation as high as around 10% especially on the left and right side with overlap in the raster area. Nevertheless, a linear correlation between a secondary ion centering parameter (DTCA-X) and age deviation in percentage terms was found, and a calibration method was established to correct this position effect. Four zircon standards (91500, M257, TEMORA-2, and Plesovice) were measured to prove the reliability of the established procedure. The original U-Pb apparent data show inconsistent deviation on four directions relative to the datum, while the final U-Pb age results is calibrated to be consistent with their recommended values, within uncertainties of ~1%. This work calls for re-examination for the previous SIMS U-Pb dating results on core-rim dating strategy, and provides a calibration protocol to correct the relative position effect.

4.
Infect Dis Poverty ; 9(1): 135, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32993762

ABSTRACT

BACKGROUND: As more and more countries approaching the goal of malaria elimination, malaria rapid diagnostic tests (RDT) was recomendated to be a diagnostic strategy to achieve and maintain the statute of malaria free, as it's less requirments on equipment and experitise than microscopic examination. But there are very few economic evaluations to confirm whether RDT was cost-effective in the setting of malaria elimination. This research aimed to offer evidence for helping decision making on malaria diagnosis strategy. METHODS: A cost-effectiveness analysis was conducted to compare RDT with microscopy examination for malaria diagnosis, by using a decision tree model. There were three strategies of malaria diagnostic testing evaluated in the model, 1) microscopy, 2) RDT, 3) RDT followed by microscopy. The effect indicator was defined as the number of malaria cases treated appropriately. Based on the joint perspective of health sector and patient, costs data were collected from hospital information systems, key informant interviews, and patient surveys. Data collection was conducted in Jiangsu from September 2018 to January 2019. Epidemiological data were obtained from local malaria surveillance reports. A hypothetical cohort of 300 000 febrile patients were simulated to calculate the total cost and effect of each strategy. One-way, two-way, and probabilistic sensitivity analysis were performed to test the robustness of the result. RESULTS: The results showed that RDT strategy was the most effective (245 cases) but also the most costly (United States Dollar [USD] 4.47 million) compared to using microscopy alone (238 cases, USD 3.63 million), and RDT followed by microscopy (221 cases, USD 2.75 million). There was no strategy dominated. One-way sensitivity analysis reflected that the result was sensitive to the change in labor cost and two-way sensitivity analysis indicated that the result was not sensitive to the proportion of falciparum malaria. The result of Monte Carlo simulation showed that RDT strategy had higher effects and higher cost than other strategies with a high probability. CONCLUSIONS: Compared to microscopy and RDT followed by microscopy, RDT strategy had higher effects and higher cost in the setting of malaria elimination.


Subject(s)
Diagnostic Tests, Routine/economics , Malaria/diagnosis , Plasmodium/isolation & purification , Cost-Benefit Analysis , Decision Making , Evidence-Based Medicine , Female , Humans , Male , Microscopy , Monte Carlo Method , Plasmodium/classification , Plasmodium/ultrastructure , Sensitivity and Specificity
5.
Infect Dis Poverty ; 8(1): 104, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888731

ABSTRACT

BACKGROUND: Rapid diagnostic tests (RDT) can effectively manage malaria cases and reduce excess costs brought by misdiagnosis. However, few studies have evaluated the economic value of this technology. The purpose of this study is to systematically review the economic value of RDT in malaria diagnosis. MAIN TEXT: A detailed search strategy was developed to identify published economic evaluations that provide evidence regarding the cost-effectiveness of malaria RDT. Electronic databases including MEDLINE, EMBASE, Biosis Previews, Web of Science and Cochrane Library were searched from Jan 2007 to July 2018. Two researchers screened studies independently based on pre-specified inclusion and exclusion criteria. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist was applied to evaluate the quality of the studies. Then cost and effectiveness data were extracted and summarized in a narrative way. Fifteen economic evaluations of RDT compared to other diagnostic methods were identified. The overall quality of studies varied greatly but most of them were scored to be of high or moderate quality. Ten of the fifteen studies reported that RDT was likely to be a cost-effective approach compared to its comparisons, but the results could be influenced by the alternatives, study perspectives, malaria prevalence, and the types of RDT. CONCLUSIONS: Based on available evidence, RDT had the potential to be more cost-effective than either microscopy or presumptive diagnosis. Further research is also required to draw a more robust conclusion.


Subject(s)
Cost-Benefit Analysis , Diagnostic Tests, Routine/economics , Malaria/diagnosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...