Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 669: 283-294, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718582

ABSTRACT

Solar-energy-powered CO2 reduction into valuable chemical fuels represents a highly promising strategy to address the currently energy and environmental issues. Owing to the nontoxicity and robust reduction capability, lead-free Cs3Bi2Br9 perovskite quantum dots (PQDs) are regarded as an attractive material for CO2 photoreduction. Nevertheless, the potential of their applications in this field has been restricted by the severe charge recombination, resulting in unsatisfactory photocatalytic performance. Herein, a step-scheme-based Cs3Bi2Br9@Nb2O5 (CBB@Nb2O5) nanocomposite was fabricated by embedding the CBB PQDs into mesoporous Nb2O5. Experimental studies, along with theoretical calculations, revealed that the charge migration route in the CBB@Nb2O5 nanocomposite conformed to the step-scheme (S-scheme) mode, enabling effective charge separation and strong redox ability preservation. Profiting from the promoted charge separation, as well as the improved CO2 adsorption contributed by mesoporous Nb2O5, the CBB@Nb2O5 nanocomposite unveiled superior CO2 photoreduction performance, with CO evolution rate reaching 143.63 µmol g-1h-1. The present study provides a potential strategy to manufacture highly-efficient perovskite-based photocatalysts for achieving carbon neutrality.

SELECTION OF CITATIONS
SEARCH DETAIL
...