Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Laser Technol ; 157: 108763, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36212170

ABSTRACT

The coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a major public health outbreak in late 2019 and was proclaimed a global pandemic in March 2020. A reflectometric-based RNA biosensor was developed by using cysteamine-stabilized gold nanoparticles (cysAuNPs) as the colorimetric probe for bioassay of COVID-19 RNA (SARS-CoV-2 RNA) sequence. The cysAuNPs aggregated in the presence of DNA probes via cationic and anionic electrostatic attraction between the positively charged cysteamine ligands and the negatively charged sugar-phosphate backbone of DNA, whilst in the presence of target RNAs, the specific recognition between DNA probes and targets depleted the electrostatic interaction between the DNA probes and cysAuNPs signal probe, leading to dispersed particles. This has rendered a remarkable shifting in the surface plasmon resonance (SPR) on the basis of visual color change of the RNA biosensor from red to purplish hue at the wavelength of 765 nm. Optical evaluation of SARS-CoV-2 RNA by means on reflectance transduction of the RNA biosensor based on cysAuNPs optical sensing probes demonstrated rapid response time of 30 min with high sensitivity, good linearity and high reproducibility across a COVID-19 RNA concentration range of 25 nM to 200 nM, and limit of detection (LOD) at 0.12 nM. qPCR amplification of SARS-CoV-2 viral RNA showed good agreement with the proposed RNA biosensor by using spiked RNA samples of the oropharyngeal swab from COVID-19 patients. Therefore, this assay is useful for rapid and early diagnosis of COVID-19 disease including asymptomatic carriers with low viral load even in the presence of co-infection with other viruses that manifest similar respiratory symptoms.

2.
Nanoscale Res Lett ; 12(1): 474, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28774152

ABSTRACT

An ultrasensitive electrochemical biosensor for the determination of pathogenic Vibrio cholerae (V. cholerae) DNA was developed based on polystyrene-co-acrylic acid (PSA) latex nanospheres-gold nanoparticles composite (PSA-AuNPs) DNA carrier matrix. Differential pulse voltammetry (DPV) using an electroactive anthraquninone oligonucleotide label was used for measuring the biosensor response. Loading of gold nanoparticles (AuNPs) on the DNA-latex particle electrode has significantly amplified the faradaic current of DNA hybridisation. Together with the use of a reported probe, the biosensor has demonstrated high sensitivity. The DNA biosensor yielded a reproducible and wide linear response range to target DNA from 1.0 × 10-21 to 1.0 × 10-8 M (relative standard deviation, RSD = 4.5%, n = 5) with a limit of detection (LOD) of 1.0 × 10-21 M (R 2 = 0.99). The biosensor obtained satisfactory recovery values between 91 and 109% (n = 3) for the detection of V. cholerae DNA in spiked samples and could be reused for six consecutive DNA assays with a repeatability RSD value of 5% (n = 5). The electrochemical biosensor response was stable and maintainable at 95% of its original response up to 58 days of storage period.

3.
Nanoscale Res Lett ; 12(1): 484, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28798991

ABSTRACT

The present research describes a simple method for the identification of the gender of arowana fish (Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nanoparticle (AcMP-AuNP) hybrid composite was fabricated. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesised with a facile and well-established one-step photopolymerization procedure and physically adsorbed on the AuNPs at the surface of a carbon screen printed electrode (SPE). The DNA biosensor was constructed simply by grafting an aminated DNA probe on the succinimide functionalised AcMPs via a strong covalent attachment. DNA hybridisation response was determined by differential pulse voltammetry (DPV) technique using anthraquinone monosulphonic acid redox probe as an electroactive oligonucleotide label (Table 1). A low detection limit at 1.0 × 10-18 M with a wide linear calibration range of 1.0 × 10-18 to 1.0 × 10-8 M (R 2 = 0.99) can be achieved by the proposed DNA biosensor under optimal conditions. Electrochemical detection of arowana DNA can be completed within 1 hour. Due to its small size and light weight, the developed DNA biosensor holds high promise for the development of functional kit for fish culture usage.

4.
Sensors (Basel) ; 15(6): 12668-81, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26029952

ABSTRACT

A fluorescence-based fiber optic toxicity biosensor based on genetically modified Escherichia coli (E. coli) with green fluorescent protein (GFP) was developed for the evaluation of the toxicity of several hazardous heavy metal ions. The toxic metals include Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III). The optimum fluorescence excitation and emission wavelengths of the optical biosensor were 400 ± 2 nm and 485 ± 2 nm, respectively. Based on the toxicity observed under optimal conditions, the detection limits of Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III) that can be detected using the toxicity biosensor were at 0.04, 0.32, 0.46, 2.80, 100, 250, 400, 720 and 2600 µg/L, respectively. The repeatability and reproducibility of the proposed biosensor were 3.5%-4.8% RSD (relative standard deviation) and 3.6%-5.1% RSD (n = 8), respectively. The biosensor response was stable for at least five weeks, and demonstrated higher sensitivity towards metal toxicity evaluation when compared to a conventional Microtox assay.


Subject(s)
Biosensing Techniques/methods , Cells, Immobilized , Escherichia coli , Green Fluorescent Proteins/analysis , Metals, Heavy/toxicity , Cells, Immobilized/chemistry , Cells, Immobilized/drug effects , Cells, Immobilized/metabolism , Escherichia coli/chemistry , Escherichia coli/drug effects , Escherichia coli/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism
5.
Sensors (Basel) ; 14(12): 23248-68, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25490588

ABSTRACT

In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 µg/L), Cd(II) (1.56 µg/L), Pb(II) (47 µg/L), Ag(I) (18 µg/L) than Zn(II) (320 µg/L), Cr(VI) (1,000 µg/L), Co(II) (1700 µg/L), Ni(II) (2800 µg/L), and Fe(III) (3100 µg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.


Subject(s)
Aliivibrio fischeri/drug effects , Biological Assay/instrumentation , Environmental Monitoring/instrumentation , Luminescent Measurements/instrumentation , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Aliivibrio fischeri/cytology , Aliivibrio fischeri/physiology , Biosensing Techniques/instrumentation , Cell Culture Techniques/methods , Cell Survival/drug effects , Equipment Design , Equipment Failure Analysis , Fiber Optic Technology/instrumentation , Metals, Heavy/pharmacology , Reproducibility of Results , Sensitivity and Specificity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/pharmacology
6.
Sensors (Basel) ; 14(7): 13186-209, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-25054632

ABSTRACT

A new silica-gel nanospheres (SiO2NPs) composition was formulated, followed by biochemical surface functionalization to examine its potential in urea biosensor development. The SiO2NPs were basically synthesized based on sol-gel chemistry using a modified Stober method. The SiO2NPs surfaces were modified with amine (-NH2) functional groups for urease immobilization in the presence of glutaric acid (GA) cross-linker. The chromoionophore pH-sensitive dye ETH 5294 was physically adsorbed on the functionalized SiO2NPs as pH transducer. The immobilized urease determined urea concentration reflectometrically based on the colour change of the immobilized chromoionophore as a result of the enzymatic hydrolysis of urea. The pH changes on the biosensor due to the catalytic enzyme reaction of immobilized urease were found to correlate with the urea concentrations over a linear response range of 50-500 mM (R2 = 0.96) with a detection limit of 10 mM urea. The biosensor response time was 9 min with reproducibility of less than 10% relative standard deviation (RSD). This optical urea biosensor did not show interferences by Na+, K+, Mg2+ and NH4+ ions. The biosensor performance has been validated using urine samples in comparison with a non-enzymatic method based on the use of p-dimethylaminobenzaldehyde (DMAB) reagent and demonstrated a good correlation between the two different methods (R2 = 0.996 and regression slope of 1.0307). The SiO2NPs-based reflectometric urea biosensor showed improved dynamic linear response range when compared to other nanoparticle-based optical urea biosensors.


Subject(s)
Biosensing Techniques/instrumentation , Nanoparticles/chemistry , Silica Gel/chemistry , Urea/chemistry , Benzaldehydes/chemistry , Enzymes, Immobilized/chemistry , Humans , Hydrogen-Ion Concentration , Hydrolysis , Limit of Detection , Reproducibility of Results , Transducers , Urease/chemistry
7.
Sensors (Basel) ; 13(12): 16851-66, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24322561

ABSTRACT

A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Enzymes, Immobilized/chemistry , Fullerenes/chemistry , Potentiometry/instrumentation , Potentiometry/methods , Urease/chemistry , Acrylates , Hydrogen-Ion Concentration , Polymers , Urea/chemistry
8.
Sensors (Basel) ; 12(5): 5445-60, 2012.
Article in English | MEDLINE | ID: mdl-22778594

ABSTRACT

An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS) functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10(-16) and 1.0 × 10(-8) M with a lower limit of detection (LOD) of 9.46 × 10(-17) M (R(2) = 0.97). This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation) (n = 3). Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.


Subject(s)
Biosensing Techniques , DNA/analysis , Electrochemical Techniques/instrumentation , Succinimides/chemistry , Base Sequence , DNA Probes , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Microspheres , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...