Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 82(13): 2505-2518.e7, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35688157

ABSTRACT

In mammalian cells, spurious transcription results in a vast repertoire of unproductive non-coding RNAs, whose deleterious accumulation is prevented by rapid decay. The nuclear exosome targeting (NEXT) complex plays a central role in directing non-functional transcripts to exosome-mediated degradation, but the structural and molecular mechanisms remain enigmatic. Here, we elucidated the architecture of the human NEXT complex, showing that it exists as a dimer of MTR4-ZCCHC8-RBM7 heterotrimers. Dimerization preconfigures the major MTR4-binding region of ZCCHC8 and arranges the two MTR4 helicases opposite to each other, with each protomer able to function on many types of RNAs. In the inactive state of the complex, the 3' end of an RNA substrate is enclosed in the MTR4 helicase channel by a ZCCHC8 C-terminal gatekeeping domain. The architecture of a NEXT-exosome assembly points to the molecular and regulatory mechanisms with which the NEXT complex guides RNA substrates to the exosome.


Subject(s)
Exosomes , RNA , Cell Nucleus/genetics , Cell Nucleus/metabolism , DEAD-box RNA Helicases/metabolism , DNA Helicases/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/genetics , Exosomes/metabolism , Humans , Protein Binding , RNA/genetics , RNA/metabolism , RNA Helicases/metabolism , RNA Stability/genetics
2.
Nat Struct Mol Biol ; 26(12): 1089-1093, 2019 12.
Article in English | MEDLINE | ID: mdl-31792449

ABSTRACT

We report the 3.45-Å resolution cryo-EM structure of human SMG1-SMG8-SMG9, a phosphatidylinositol-3-kinase (PI(3)K)-related protein kinase (PIKK) complex central to messenger RNA surveillance. Structural and MS analyses reveal the presence of inositol hexaphosphate (InsP6) in the SMG1 kinase. We show that the InsP6-binding site is conserved in mammalian target of rapamycin (mTOR) and potentially other PIKK members, and that it is required for optimal in vitro phosphorylation of both SMG1 and mTOR substrates.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Phytic Acid/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Binding Sites , Cryoelectron Microscopy , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Models, Molecular , Phytic Acid/chemistry , Protein Binding , Protein Conformation , Protein Kinases/chemistry , Protein Kinases/ultrastructure , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/ultrastructure , RNA Stability
3.
Nat Commun ; 10(1): 3393, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358741

ABSTRACT

The nuclear exosome and its essential co-factor, the RNA helicase MTR4, play crucial roles in several RNA degradation pathways. Besides unwinding RNA substrates for exosome-mediated degradation, MTR4 associates with RNA-binding proteins that function as adaptors in different RNA processing and decay pathways. Here, we identify and characterize the interactions of human MTR4 with a ribosome processing adaptor, NVL, and with ZCCHC8, an adaptor involved in the decay of small nuclear RNAs. We show that the unstructured regions of NVL and ZCCHC8 contain short linear motifs that bind the MTR4 arch domain in a mutually exclusive manner. These short sequences diverged from the arch-interacting motif (AIM) of yeast rRNA processing factors. Our results suggest that nuclear exosome adaptors have evolved canonical and non-canonical AIM sequences to target human MTR4 and demonstrate the versatility and specificity with which the MTR4 arch domain can recruit a repertoire of different RNA-binding proteins.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , Cell Nucleus/metabolism , Exosomes/genetics , Nuclear Proteins/metabolism , RNA Helicases/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/genetics , Amino Acid Sequence , Binding Sites/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Crystallography, X-Ray , Exosomes/metabolism , HeLa Cells , Humans , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Binding , Protein Domains , RNA Helicases/chemistry , RNA Helicases/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sequence Homology, Amino Acid
4.
Article in English | MEDLINE | ID: mdl-32493762

ABSTRACT

The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.

5.
RNA ; 23(7): 1028-1034, 2017 07.
Article in English | MEDLINE | ID: mdl-28389433

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a eukaryotic mRNA degradation pathway involved in surveillance and post-transcriptional regulation, and executed by the concerted action of several trans-acting factors. The SMG1 kinase is an essential NMD factor in metazoans and is associated with two recently identified and yet poorly characterized proteins, SMG8 and SMG9. We determined the 2.5 Å resolution crystal structure of a SMG8-SMG9 core complex from C. elegans We found that SMG8-SMG9 is a G-domain heterodimer with architectural similarities to the dynamin-like family of GTPases such as Atlastin and GBP1. The SMG8-SMG9 heterodimer forms in the absence of nucleotides, with interactions conserved from worms to humans. Nucleotide binding occurs at the G domain of SMG9 but not of SMG8. Fitting the GDP-bound SMG8-SMG9 structure in EM densities of the human SMG1-SMG8-SMG9 complex raises the possibility that the nucleotide site of SMG9 faces SMG1 and could impact the kinase conformation and/or regulation.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Animals , Binding Sites , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/genetics , Crystallography, X-Ray , Models, Molecular , Nonsense Mediated mRNA Decay , Protein Binding , Protein Domains , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger
6.
Proc Natl Acad Sci U S A ; 110(47): 18874-9, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24198335

ABSTRACT

The founding members of the HD-domain protein superfamily are phosphohydrolases, and newly discovered members are generally annotated as such. However, myo-inositol oxygenase (MIOX) exemplifies a second, very different function that has evolved within the common scaffold of this superfamily. A recently discovered HD protein, PhnZ, catalyzes conversion of 2-amino-1-hydroxyethylphosphonate to glycine and phosphate, culminating a bacterial pathway for the utilization of environmentally abundant 2-aminoethylphosphonate. Using Mössbauer and EPR spectroscopies, X-ray crystallography, and activity measurements, we show here that, like MIOX, PhnZ employs a mixed-valent Fe(II)/Fe(III) cofactor for the O2-dependent oxidative cleavage of its substrate. Phylogenetic analysis suggests that many more HD proteins may catalyze yet-unknown oxygenation reactions using this hitherto exceptional Fe(II)/Fe(III) cofactor. The results demonstrate that the catalytic repertoire of the HD superfamily extends well beyond phosphohydrolysis and suggest that the mechanism used by MIOX and PhnZ may be a common strategy for oxidative C-X bond cleavage.


Subject(s)
Bacteria/enzymology , Inositol Oxygenase/chemistry , Inositol Oxygenase/metabolism , Models, Molecular , Organophosphonates/metabolism , Protein Conformation , Catalysis , Crystallography, X-Ray , Escherichia coli , Inositol Oxygenase/genetics , Molecular Structure , Phylogeny , Spectroscopy, Mossbauer
SELECTION OF CITATIONS
SEARCH DETAIL
...