Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Crohns Colitis ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37941436

ABSTRACT

BACKGROUND AND AIMS: We sought to determine whether six commonly used immunosuppressive regimens were associated with lower antibody responses after seasonal influenza vaccination in patients with IBD. METHODS: We conducted a prospective study including 213 IBD patients and 53 healthy controls; 165 who had received seasonal influenza vaccine and 101 who had not. IBD medications included infliximab, thiopurines, infliximab and thiopurine combination therapy, ustekinumab, vedolizumab or tofacitinib. The primary outcome was antibody responses against influenza/A H3N2 and A/H1N1, compared to controls, adjusting for age, prior vaccination and interval between vaccination and sampling. RESULTS: Lower antibody responses against influenza A/H3N2 were observed in patients on infliximab (Geometric Mean Ratio 0.35 [95% CI 0.20-0.60], p=0.0002), combination of infliximab and thiopurine therapy (0.46 [0.27-0.79], p=0.0050) and tofacitinib (0.28 [0.14-0.57], p=0.0005) compared to controls. Lower antibody responses against A/H1N1 were observed in patients on infliximab (0.29 [0.15-0.56], p=0.0003), combination of infliximab and thiopurine therapy (0.34 [0.17-0.66], p=0.0016), thiopurine monotherapy (0.46 [0.24-0.87], p=0.017) and tofacitinib (0.23 [0.10-0.56], p=0.0013). Ustekinumab and vedolizumab were not associated with reduced antibody responses against A/H3N2 or A/H1N1. Vaccination in the previous year was associated with higher antibody responses to A/H3N2. Vaccine-induced anti-SARS-CoV-2 antibody concentration weakly correlated with antibodies against H3N2 (r=0.27; p=0.0004) and H1N1 (r=0.33; p<0.0001). CONCLUSIONS: Vaccination in both the 2020-2021 and 2021-2022 seasons was associated with significantly higher antibody responses to influenza/A than no vaccination or vaccination in 2021-2022 alone. Infliximab and tofacitinib are associated with lower binding antibody responses to Influenza/A, similar to COVID-19 vaccine-induced antibody responses.

2.
EClinicalMedicine ; 64: 102249, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37842172

ABSTRACT

Background: Patients with inflammatory bowel disease (IBD) receiving anti-TNF and JAK-inhibitor therapy have attenuated responses to COVID-19 vaccination. We aimed to determine how IBD treatments affect neutralising antibody responses against the Omicron BA.4/5 variant. Methods: In this multicentre cohort study, we prospectively recruited 340 adults (69 healthy controls and 271 IBD) at nine UK hospitals between May 28, 2021 and March 29, 2022. The IBD study population was established (>12 weeks therapy) on either thiopurine (n = 63), infliximab (n = 45), thiopurine and infliximab combination therapy (n = 48), ustekinumab (n = 45), vedolizumab (n = 46) or tofacitinib (n = 24). Patients were excluded if they were being treated with any other immunosuppressive therapies. Participants had two doses of either ChAdOx1 nCoV-19 or BNT162b2 vaccines, followed by a third dose of either BNT162b2 or mRNA1273. Pseudo-neutralisation assays against SARS-CoV-2 wild-type and BA.4/5 were performed. The half maximal inhibitory concentration (NT50) of participant sera was calculated. The primary outcome was anti-SARS-CoV-2 neutralising response against wild-type virus and Omicron BA.4/5 variant after the second and third doses of anti-SARS-CoV-2 vaccine, stratified by immunosuppressive therapy, adjusting for prior infection, vaccine type, age, and interval between vaccination and blood collection. This study is registered with ISRCTN (No. 13495664). Findings: Both heterologous (first two doses adenovirus vaccine, third dose mRNA vaccine) and homologous (three doses mRNA vaccine) vaccination strategies significantly increased neutralising titres against both wild-type SARS-CoV-2 virus and the Omicron BA.4/5 variant in healthy participants and patients with IBD. Antibody titres against BA.4/5 were significantly lower than antibodies against wild-type virus in both healthy participants and patients with IBD (p < 0.0001). Multivariable models demonstrated that neutralising antibodies against BA.4/5 after three doses of vaccine were significantly lower in patients with IBD on infliximab (Geometric Mean Ratio (GMR) 0.19 [0.10, 0.36], p < 0.0001), infliximab and thiopurine combination (GMR 0.25 [0.13, 0.49], p < 0.0001) or tofacitinib (GMR 0.43 [0.20, 0.91], p = 0.028), but not in patients on thiopurine monotherapy, ustekinumab, or vedolizumab. Breakthrough infection was associated with lower neutralising antibodies against wild-type (p = 0.037) and BA.4/5 (p = 0.045). Interpretation: A third dose of a COVID-19 mRNA vaccine based on the wild-type spike glycoprotein significantly boosts neutralising antibody titres in patients with IBD. However, responses are lower against the Omicron variant BA.4/5, particularly in patients taking anti-TNF and JAK-inhibitor therapy. Breakthrough infections are associated with lower neutralising antibodies and immunosuppressed patients with IBD may receive additional benefit from bivalent vaccine boosters which target Omicron variants. Funding: Pfizer.

3.
Med Sci Educ ; 33(4): 925-934, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37546193

ABSTRACT

Integrating foundational and clinical science in medical and other professional healthcare degree programs has been well established as a means to enhance learning. However, implementation remains challenging, and a significant gap exists in guidance for non-professional degree programs to effectively accomplish both types of integration. Additionally, many modalities described in the literature are resource-intensive, scale poorly to larger groups, and are widely inaccessible. We present an online modality combining team-based learning and a simulation-based learning experience that fosters vertical and horizontal integration of physiology, pharmacology, and clinical science. The tools utilized include a vital sign simulator, video conferencing software, and a document-sharing platform. The activity demonstrated improved knowledge comparing pre- and posttests and evidence that the activity helped students integrate physiology, pharmacology, and clinical medicine. The novel structure is effective and accessible, uses open-source software and standard equipment available to most undergraduate and graduate faculty, and is adaptable to in-person, hybrid-remote, and fully remote delivery. Supplementary Information: The online version contains supplementary material available at 10.1007/s40670-023-01817-9.

6.
Transfusion ; 62(12): 2587-2595, 2022 12.
Article in English | MEDLINE | ID: mdl-36285891

ABSTRACT

BACKGROUND: Familial pseudohyperkalemia (FP) is a rare asymptomatic condition characterized by an increased rate of potassium leak from red blood cells (RBC) on refrigeration. Gamma irradiation compromises RBC membrane integrity and accelerates potassium leakage. Here, we compared the effect of irradiation, applied early or late in storage, on FP versus non-FP RBC. STUDY DESIGN: Five FP and 10 non-FP individuals from the National Institute for Health Research Cambridge BioResource, UK, and three FP and six non-FP individuals identified by Australian Red Cross Lifeblood consented to the study. Blood was collected according to standard practice in each center, held overnight at 18-24°C, leucocyte-depleted, and processed into red cell concentrates (RCC) in Saline Adenine Glucose Mannitol. On Day 1, RCC were split equally into six Red Cell Splits (RCS). Two RCS remained non-irradiated, two were irradiated on Day 1 and two were irradiated on Day 14. RBCs were tested over cold storage for quality parameters. RESULTS: As expected, non-irradiated FP RCS had significantly higher supernatant potassium levels than controls throughout 28 days of storage (p < .001). When irradiated early, FP RCS released potassium at similar rates to control. When irradiated late, FP RCS supernatants had higher initial post-irradiation potassium concentration than controls but were similar to controls by the end of storage (14 days post-irradiation). No other parameters studied showed a significant difference between FP and control. DISCUSSION: FP does not increase the rate of potassium leak from irradiated RBCs. Irradiation may cause a membrane defect similar to that in FP RBCs.


Subject(s)
Erythrocytes , Potassium , Humans , Australia
7.
Lancet Gastroenterol Hepatol ; 7(11): 1005-1015, 2022 11.
Article in English | MEDLINE | ID: mdl-36088954

ABSTRACT

BACKGROUND: COVID-19 vaccine-induced antibody responses are reduced in patients with inflammatory bowel disease (IBD) taking anti-TNF or tofacitinib after two vaccine doses. We sought to assess whether immunosuppressive treatments were associated with reduced antibody and T-cell responses in patients with IBD after a third vaccine dose. METHODS: VIP was a multicentre, prospective, case-control study done in nine centres in the UK. We recruited immunosuppressed patients with IBD and non-immunosuppressed healthy individuals. All participants were aged 18 years or older. The healthy control group had no diagnosis of IBD and no current treatment with systemic immunosuppressive therapy for any other indication. The immunosuppressed patients with IBD had an established diagnosis of Crohn's disease, ulcerative colitis, or unclassified IBD using standard definitions of IBD, and were receiving established treatment with one of six immunosuppressive regimens for at least 12 weeks at the time of first dose of SARS-CoV-2 vaccination. All participants had to have received three doses of an approved COVID-19 vaccine. SARS-CoV-2 spike antibody binding and T-cell responses were measured in all participant groups. The primary outcome was anti-SARS-CoV-2 spike (S1 receptor binding domain [RBD]) antibody concentration 28-49 days after the third vaccine dose, adjusted by age, homologous versus heterologous vaccine schedule, and previous SARS-CoV-2 infection. The primary outcome was assessed in all participants with available data. FINDINGS: Between Oct 18, 2021, and March 29, 2022, 352 participants were included in the study (thiopurine n=65, infliximab n=46, thiopurine plus infliximab combination therapy n=49, ustekinumab n=44, vedolizumab n=50, tofacitinib n=26, and healthy controls n=72). Geometric mean anti-SARS-CoV-2 S1 RBD antibody concentrations increased in all groups following a third vaccine dose, but were significantly lower in patients treated with infliximab (2736·8 U/mL [geometric SD 4·3]; p<0·0001), infliximab plus thiopurine (1818·3 U/mL [6·7]; p<0·0001), and tofacitinib (8071·5 U/mL [3·1]; p=0·0018) compared with the healthy control group (16 774·2 U/mL [2·6]). There were no significant differences in anti-SARS-CoV-2 S1 RBD antibody concentrations between the healthy control group and patients treated with thiopurine (12 019·7 U/mL [2·2]; p=0·099), ustekinumab (11 089·3 U/mL [2·8]; p=0·060), or vedolizumab (13 564·9 U/mL [2·4]; p=0·27). In multivariable modelling, lower anti-SARS-CoV-2 S1 RBD antibody concentrations were independently associated with infliximab (geometric mean ratio 0·15 [95% CI 0·11-0·21]; p<0·0001), tofacitinib (0·52 [CI 0·31-0·87]; p=0·012), and thiopurine (0·69 [0·51-0·95]; p=0·021), but not with ustekinumab (0·64 [0·39-1·06]; p=0·083), or vedolizumab (0·84 [0·54-1·30]; p=0·43). Previous SARS-CoV-2 infection (1·58 [1·22-2·05]; p=0·0006) was independently associated with higher anti-SARS-CoV-2 S1 RBD antibody concentrations and older age (0·88 [0·80-0·97]; p=0·0073) was independently associated with lower anti-SARS-CoV-2 S1 RBD antibody concentrations. Antigen-specific T-cell responses were similar in all groups, except for recipients of tofacitinib without evidence of previous infection, where T-cell responses were significantly reduced relative to healthy controls (p=0·021). INTERPRETATION: A third dose of COVID-19 vaccine induced a boost in antibody binding in immunosuppressed patients with IBD, but these responses were reduced in patients taking infliximab, infliximab plus thiopurine, and tofacitinib. Tofacitinib was also associated with reduced T-cell responses. These findings support continued prioritisation of immunosuppressed groups for further vaccine booster dosing, particularly patients on anti-TNF and JAK inhibitors. FUNDING: Pfizer.


Subject(s)
COVID-19 Vaccines , COVID-19 , Inflammatory Bowel Diseases , Janus Kinase Inhibitors , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Case-Control Studies , Humans , Immunosuppressive Agents/adverse effects , Inflammatory Bowel Diseases/drug therapy , Infliximab/therapeutic use , Prospective Studies , SARS-CoV-2 , T-Lymphocytes , Tumor Necrosis Factor Inhibitors , Ustekinumab
8.
Lancet Gastroenterol Hepatol ; 7(4): 342-352, 2022 04.
Article in English | MEDLINE | ID: mdl-35123676

ABSTRACT

BACKGROUND: The effects that therapies for inflammatory bowel disease (IBD) have on immune responses to SARS-CoV-2 vaccination are not yet fully known. Therefore, we sought to determine whether COVID-19 vaccine-induced antibody responses were altered in patients with IBD on commonly used immunosuppressive drugs. METHODS: In this multicentre, prospective, case-control study (VIP), we recruited adults with IBD treated with one of six different immunosuppressive treatment regimens (thiopurines, infliximab, a thiopurine plus infliximab, ustekinumab, vedolizumab, or tofacitinib) and healthy control participants from nine centres in the UK. Eligible participants were aged 18 years or older and had received two doses of COVID-19 vaccines (either ChAdOx1 nCoV-19 [Oxford-AstraZeneca], BNT162b2 [Pfizer-BioNTech], or mRNA1273 [Moderna]) 6-12 weeks apart (according to scheduling adopted in the UK). We measured antibody responses 53-92 days after a second vaccine dose using the Roche Elecsys Anti-SARS-CoV-2 spike electrochemiluminescence immunoassay. The primary outcome was anti-SARS-CoV-2 spike protein antibody concentrations in participants without previous SARS-CoV-2 infection, adjusted by age and vaccine type, and was analysed by use of multivariable linear regression models. This study is registered in the ISRCTN Registry, ISRCTN13495664, and is ongoing. FINDINGS: Between May 31 and Nov 24, 2021, we recruited 483 participants, including patients with IBD being treated with thiopurines (n=78), infliximab (n=63), a thiopurine plus infliximab (n=72), ustekinumab (n=57), vedolizumab (n=62), or tofacitinib (n=30), and 121 healthy controls. We included 370 participants without evidence of previous infection in our primary analysis. Geometric mean anti-SARS-CoV-2 spike protein antibody concentrations were significantly lower in patients treated with infliximab (156·8 U/mL [geometric SD 5·7]; p<0·0001), infliximab plus thiopurine (111·1 U/mL [5·7]; p<0·0001), or tofacitinib (429·5 U/mL [3·1]; p=0·0012) compared with controls (1578·3 U/mL [3·7]). There were no significant differences in antibody concentrations between patients treated with thiopurine monotherapy (1019·8 U/mL [4·3]; p=0·74), ustekinumab (582·4 U/mL [4·6]; p=0·11), or vedolizumab (954·0 U/mL [4·1]; p=0·50) and healthy controls. In multivariable modelling, lower anti-SARS-CoV-2 spike protein antibody concentrations were independently associated with infliximab (geometric mean ratio 0·12, 95% CI 0·08-0·17; p<0·0001) and tofacitinib (0·43, 0·23-0·81; p=0·0095), but not with ustekinumab (0·69, 0·41-1·19; p=0·18), thiopurines (0·89, 0·64-1·24; p=0·50), or vedolizumab (1·16, 0·74-1·83; p=0·51). mRNA vaccines (3·68, 2·80-4·84; p<0·0001; vs adenovirus vector vaccines) were independently associated with higher antibody concentrations and older age per decade (0·79, 0·72-0·87; p<0·0001) with lower antibody concentrations. INTERPRETATION: For patients with IBD, the immunogenicity of COVID-19 vaccines varies according to immunosuppressive drug exposure, and is attenuated in recipients of infliximab, infliximab plus thiopurines, and tofacitinib. Scheduling of third primary, or booster, doses could be personalised on the basis of an individual's treatment, and patients taking anti-tumour necrosis factor and tofacitinib should be prioritised. FUNDING: Pfizer.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Adolescent , Adult , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , ChAdOx1 nCoV-19 , Humans , Inflammatory Bowel Diseases/drug therapy , Prospective Studies , SARS-CoV-2
10.
Nature ; 583(7814): 90-95, 2020 07.
Article in English | MEDLINE | ID: mdl-32499645

ABSTRACT

Primary immunodeficiency (PID) is characterized by recurrent and often life-threatening infections, autoimmunity and cancer, and it poses major diagnostic and therapeutic challenges. Although the most severe forms of PID are identified in early childhood, most patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent and up to 10% develop lymphoid malignancies1-3. Consequently, in sporadic (or non-familial) PID genetic diagnosis is difficult and the role of genetics is not well defined. Here we address these challenges by performing whole-genome sequencing in a large PID cohort of 1,318 participants. An analysis of the coding regions of the genome in 886 index cases of PID found that disease-causing mutations in known genes that are implicated in monogenic PID occurred in 10.3% of these patients, and a Bayesian approach (BeviMed4) identified multiple new candidate PID-associated genes, including IVNS1ABP. We also examined the noncoding genome, and found deletions in regulatory regions that contribute to disease causation. In addition, we used a genome-wide association study to identify loci that are associated with PID, and found evidence for the colocalization of-and interplay between-novel high-penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to the variable penetrance and phenotypic complexity that are observed in PID. Thus, using a cohort-based whole-genome-sequencing approach in the diagnosis of PID can increase diagnostic yield and further our understanding of the key pathways that influence immune responsiveness in humans.


Subject(s)
Primary Immunodeficiency Diseases/genetics , Whole Genome Sequencing , Actin-Related Protein 2-3 Complex/genetics , Bayes Theorem , Cohort Studies , Female , Genome-Wide Association Study , Humans , Male , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , RNA-Binding Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Transcription Factors/genetics
11.
Hum Mutat ; 41(1): 277-290, 2020 01.
Article in English | MEDLINE | ID: mdl-31562665

ABSTRACT

The heterogeneous manifestations of MYH9-related disorder (MYH9-RD), characterized by macrothrombocytopenia, Döhle-like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE-BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9-RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9-RD should always be considered. A HTS-based strategy is a reliable method to reach a conclusive diagnosis of MYH9-RD in clinical practice.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , High-Throughput Nucleotide Sequencing , Myosin Heavy Chains/genetics , Adolescent , Adult , Aged , Alleles , Child , Child, Preschool , Chromosome Mapping , Evolution, Molecular , Female , Fluorescent Antibody Technique , Gene Expression , Genetic Association Studies/methods , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Male , Middle Aged , Mutation , Myosin Heavy Chains/metabolism , Phenotype , Young Adult
12.
Oncotarget ; 5(21): 10434-45, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25372020

ABSTRACT

The successes of targeted therapeutics against EGFR and ALK in non-small cell lung cancer (NSCLC) have demonstrated the substantial survival gains made possible by precision therapy. However, the majority of patients do not have tumors with genetic alterations responsive to these therapies, and therefore identification of new targets is needed. Our laboratory previously identified MER receptor tyrosine kinase as one such potential target. We now report our findings targeting MER with a clinically translatable agent--Mer590, a monoclonal antibody specific for MER. Mer590 rapidly and robustly reduced surface and total MER levels in multiple cell lines. Treatment reduced surface MER levels by 87%, and this effect was maximal within four hours. Total MER levels were also dramatically reduced, and this persisted for at least seven days. Mechanistically, MER down-regulation was mediated by receptor internalization and degradation, leading to inhibition of downstream signaling through STAT6, AKT, and ERK1/2. Functionally, this resulted in increased apoptosis, increased chemosensitivity to carboplatin, and decreased colony formation. In addition to carboplatin, Mer590 interacted cooperatively with shRNA-mediated MER inhibition to augment apoptosis. These data demonstrate that MER inhibition can be achieved with a monoclonal antibody in NSCLC. Optimization toward a clinically available anti-MER antibody is warranted.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Carboplatin/pharmacology , Carcinoma, Non-Small-Cell Lung/immunology , Cell Line, Tumor , Down-Regulation , Drug Resistance/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/immunology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Targeted Therapy , Oncogene Protein v-akt/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , RNA, Small Interfering/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/immunology , STAT6 Transcription Factor/metabolism , Signal Transduction/drug effects , Tumor Stem Cell Assay , c-Mer Tyrosine Kinase
13.
Blood ; 122(9): 1599-609, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23861246

ABSTRACT

Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre-B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications.


Subject(s)
Molecular Targeted Therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Gene Expression Regulation, Leukemic/drug effects , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Xenograft Model Antitumor Assays , c-Mer Tyrosine Kinase
14.
PLoS One ; 7(2): e31635, 2012.
Article in English | MEDLINE | ID: mdl-22363695

ABSTRACT

Mer tyrosine kinase is ectopically expressed in acute lymphoblastic leukemia and associated with enhanced chemoresistance and disease progression. While such effects are generally ascribed to increased engagement of oncogenic pathways downstream of Mer stimulation by its ligand, Gas6, Mer has not been characterized beyond the scope of its signaling activity. The present study explores Mer behavior following prolonged exposure to Gas6, a context similar to the Gas6-enriched microenvironment of the bone marrow, where a steady supply of ligand facilitates continuous engagement of Mer and likely sustains the presence of leukemic cells. Long-term Gas6 exposure induced production of a partially N-glycosylated form of Mer from newly synthesized stores of protein. Preferential expression of the partial Mer glycoform was associated with diminished levels of Mer on the cell surface and altered Mer localization within the nuclear-soluble and chromatin-bound fractions. The presence of Mer in the nucleus is a novel finding for this receptor, and the glycoform-specific preferences observed in each nuclear compartment suggest that glycosylation may influence Mer function within particular subcellular locales. Previous studies have established Mer as an attractive cancer biologic target, and understanding the complexity of its activity has important implications for potential strategies of Mer inhibition in leukemia therapy. Our results identify several novel features of Mer that expand the breadth of its functions and impact the development of therapeutic modalities designed to target Mer.


Subject(s)
Cell Nucleus/drug effects , Cell Nucleus/enzymology , Intercellular Signaling Peptides and Proteins/pharmacology , Leukemia/enzymology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Amino Acid Sequence , Cell Compartmentation/drug effects , Cell Line, Tumor , Cell Membrane/enzymology , Conserved Sequence , Glycosylation/drug effects , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Ligands , Molecular Sequence Data , Molecular Weight , Nuclear Export Signals , Nuclear Localization Signals/chemistry , Protein Biosynthesis/drug effects , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Proto-Oncogene Proteins/chemistry , Receptor Protein-Tyrosine Kinases/chemistry , Signal Transduction/drug effects , Time Factors , c-Mer Tyrosine Kinase
15.
Br J Haematol ; 151(4): 295-311, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20813012

ABSTRACT

Modifications to the treatment of acute lymphoblastic leukaemia (ALL) in children have led to a dramatic increase in survival in the past 40 years. Despite this success, a significant subset of paediatric leukaemia patients either relapse or fail to ever achieve a complete remission. Additionally, some patients necessitate treatment with intensified chemotherapy regimens due to clinical or laboratory findings which identify them as high risk. These patients are unlikely to respond to further minor adjustments to the dosing or timing of administration of the same chemotherapy medications. Many novel targeted therapies for the treatment of childhood ALL provide potential mechanisms to further improve cure rates, and provide the possibility of minimizing toxicity to non-malignant cells, given their specificity to malignant cell phenotypes. This article explores many of the potential targeted therapies in varying stages of development, from those currently in clinical trials to those still being refined in the research laboratory.


Subject(s)
Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Child , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Epigenesis, Genetic/drug effects , Humans , Phosphotransferases/antagonists & inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
16.
Expert Opin Ther Targets ; 14(10): 1073-90, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20809868

ABSTRACT

IMPORTANCE OF THE FIELD: Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the role of these receptor tyrosine kinases (RTKs) in development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to cell survival, migration, invasion, metastasis and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer. AREAS COVERED IN THIS REVIEW: Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, NSCLC, and breast cancer is examined. A discussion of Axl and/or Mer inhibitors in development is provided. WHAT THE READER WILL GAIN: Potential toxicities associated with Axl or Mer inhibition are addressed. We propose that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a therapeutic opportunity to target both tumor cells and the stromal components that facilitate disease progression. TAKE HOME MESSAGE: Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted inhibition of these RTKs may be effective as anti-tumor and/or anti-metastatic therapy, particularly if combined with standard cytotoxic therapies.


Subject(s)
Neoplasms/drug therapy , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Clinical Trials as Topic , Humans , Neoplasms/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Treatment Outcome , Tumor Microenvironment , Axl Receptor Tyrosine Kinase
17.
Nat Genet ; 42(7): 604-7, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20543847

ABSTRACT

We conducted a genome-wide association study for testicular germ cell tumor, genotyping 298,782 SNPs in 979 affected individuals and 4,947 controls from the UK and replicating associations in a further 664 cases and 3,456 controls. We identified three new susceptibility loci, two of which include genes that are involved in telomere regulation. We identified two independent signals within the TERT-CLPTM1L locus on chromosome 5, which has previously been associated with multiple other cancers (rs4635969, OR=1.54, P=1.14x10(-23); rs2736100, OR=1.33, P=7.55x10(-15)). We also identified a locus on chromosome 12 (rs2900333, OR=1.27, P=6.16x10(-10)) that contains ATF7IP, a regulator of TERT expression. Finally, we identified a locus on chromosome 9 (rs755383, OR=1.37, P=1.12x10(-23)), containing the sex determination gene DMRT1, which has been linked to teratoma susceptibility in mice.


Subject(s)
Neoplasms, Germ Cell and Embryonal/genetics , Telomerase/genetics , Testicular Neoplasms/genetics , Transcription Factors/genetics , Adult , Gene Frequency , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium , Logistic Models , Male , Odds Ratio , Polymorphism, Single Nucleotide , Repressor Proteins , Risk Factors , Young Adult
18.
Blood ; 114(13): 2678-87, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19643988

ABSTRACT

Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 80%. However, additional changes using available drugs are unlikely to provide significant improvement in survival. New therapies are warranted given the risk of severe therapy-associated toxicities including infertility, organ damage, and secondary malignancy. Here, we report ectopic expression of the receptor tyrosine kinase Mer in pediatric B-cell ALL. Inhibition of Mer prevented Erk 1/2 activation, increased the sensitivity of B-ALL cells to cytotoxic agents in vitro by promoting apoptosis, and delayed disease onset in a mouse model of leukemia. In addition, we discovered cross-talk between the Mer and mammalian target of rapamycin (mTOR) signaling pathways. Our results identify Mer as a novel therapeutic target in ALL and suggest that inhibitors of Mer will interact synergistically with currently used therapies. This strategy may allow for dose reduction resulting in decreased toxicity and increased survival rates. Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications.


Subject(s)
Drug Delivery Systems , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Survival/genetics , Child , Drug Delivery Systems/methods , Gene Expression Regulation, Leukemic , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , c-Mer Tyrosine Kinase
19.
Nat Genet ; 41(7): 807-10, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19483681

ABSTRACT

We conducted a genome-wide association study for testicular germ cell tumor (TGCT), genotyping 307,666 SNPs in 730 cases and 1,435 controls from the UK and replicating associations in a further 571 cases and 1,806 controls. We found strong evidence for susceptibility loci on chromosome 5 (per allele OR = 1.37 (95% CI = 1.19-1.58), P = 3 x 10(-13)), chromosome 6 (OR = 1.50 (95% CI = 1.28-1.75), P = 10(-13)) and chromosome 12 (OR = 2.55 (95% CI = 2.05-3.19), P = 10(-31)). KITLG, encoding the ligand for the receptor tyrosine kinase KIT, which has previously been implicated in the pathogenesis of TGCT and the biology of germ cells, may explain the association on chromosome 12.


Subject(s)
Genome-Wide Association Study , Neoplasms, Germ Cell and Embryonal/genetics , Testicular Neoplasms/genetics , Case-Control Studies , Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 5 , Chromosomes, Human, Pair 6 , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Stem Cell Factor/genetics , United Kingdom , bcl-2 Homologous Antagonist-Killer Protein/genetics
20.
Adv Cancer Res ; 100: 35-83, 2008.
Article in English | MEDLINE | ID: mdl-18620092

ABSTRACT

Tyro-3, Axl, and Mer constitute the TAM family of receptor tyrosine kinases (RTKs) characterized by a conserved sequence within the kinase domain and adhesion molecule-like extracellular domains. This small family of RTKs regulates an intriguing mix of processes, including cell proliferation/survival, cell adhesion and migration, blood clot stabilization, and regulation of inflammatory cytokine release. Genetic or experimental alteration of TAM receptor function can contribute to a number of disease states, including coagulopathy, autoimmune disease, retinitis pigmentosa, and cancer. In this chapter, we first provide a comprehensive review of the structure, regulation, biologic functions, and downstream signaling pathways of these receptors. In addition, we discuss recent evidence which suggests a role for TAM receptors in oncogenic mechanisms as family members are overexpressed in a spectrum of human cancers and have prognostic significance in some. Possible strategies for targeted inhibition of the TAM family in the treatment of human cancer are described. Further research will be necessary to evaluate the full clinical implications of TAM family expression and activation in cancer.


Subject(s)
Neoplasms/etiology , Neoplasms/therapy , Oncogene Proteins/physiology , Proto-Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , Animals , Cell Survival , Drug Delivery Systems , Humans , Models, Biological , Neoplasm Invasiveness/genetics , Neoplasms/genetics , Neoplasms/pathology , Neovascularization, Pathologic/genetics , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , Tumor Burden/genetics , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...