Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Science ; 382(6674): 1042-1050, 2023 12.
Article in English | MEDLINE | ID: mdl-37972196

ABSTRACT

Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that initiates both ligand-dependent tumor-suppressive and ligand-independent oncogenic signaling. We used time-resolved, live-cell fluorescence spectroscopy to show that the ligand-free EphA2 assembles into multimers driven by two types of intermolecular interactions in the ectodomain. The first type entails extended symmetric interactions required for ligand-induced receptor clustering and tumor-suppressive signaling that inhibits activity of the oncogenic extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) protein kinases and suppresses cell migration. The second type is an asymmetric interaction between the amino terminus and the membrane proximal domain of the neighboring receptors, which supports oncogenic signaling and promotes migration in vitro and tumor invasiveness in vivo. Our results identify the molecular interactions that drive the formation of the EphA2 multimeric signaling clusters and reveal the pivotal role of EphA2 assembly in dictating its opposing functions in oncogenesis.


Subject(s)
Protein Multimerization , Receptor, EphA2 , Tumor Suppressor Proteins , Humans , Ligands , Neoplasm Invasiveness , Phosphorylation , Receptor, EphA2/chemistry , Receptor, EphA2/metabolism , Signal Transduction , Spectrometry, Fluorescence , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism
2.
Methods ; 140-141: 40-51, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29448037

ABSTRACT

Fluorescence cross-correlation spectroscopy (FCCS) is an advanced fluorescence technique that can quantify protein-protein interactions in vivo. Due to the dynamic, heterogeneous nature of the membrane, special considerations must be made to interpret FCCS data accurately. In this study, we describe a method to quantify the oligomerization of membrane proteins tagged with two commonly used fluorescent probes, mCherry (mCH) and enhanced green (eGFP) fluorescent proteins. A mathematical model is described that relates the relative cross-correlation value (fc) to the degree of oligomerization. This treatment accounts for mismatch in the confocal volumes, combinatoric effects of using two fluorescent probes, and the presence of non-fluorescent probes. Using this model, we calculate a ladder of fc values which can be used to determine the oligomer state of membrane proteins from live-cell experimental data. Additionally, a probabilistic mathematical simulation is described to resolve the affinity of different dimeric and oligomeric protein controls.


Subject(s)
Membrane Proteins/metabolism , Models, Chemical , Protein Multimerization , Spectrometry, Fluorescence/methods , Animals , COS Cells , Chlorocebus aethiops , Fluorescence , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Models, Statistical , Protein Binding , Spectrometry, Fluorescence/instrumentation
3.
Sci Rep ; 7: 45084, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28338017

ABSTRACT

Among the 20 subfamilies of protein receptor tyrosine kinases (RTKs), Eph receptors are unique in possessing a sterile alpha motif (SAM domain) at their C-terminal ends. However, the functions of SAM domains in Eph receptors remain elusive. Here we report on a combined cell biology and quantitative fluorescence study to investigate the role of the SAM domain in EphA2 function. We observed elevated tyrosine autophosphorylation levels upon deletion of the EphA2 SAM domain (EphA2ΔS) in DU145 and PC3 prostate cancer cells and a skin tumor cell line derived from EphA1/A2 knockout mice. These results suggest that SAM domain deletion induced constitutive activation of EphA2 kinase activity. In order to explain these effects, we applied fluorescence correlation spectroscopy to investigate the lateral molecular organization of EphA2. Our results indicate that SAM domain deletion (EphA2ΔS-GFP) increases oligomerization compared to the full length receptor (EphA2FL-GFP). Stimulation with ephrinA1, a ligand for EphA2, induced further oligomerization and activation of EphA2FL-GFP. The SAM domain deletion mutant, EphA2ΔS-GFP, also underwent further oligomerization upon ephrinA1 stimulation, but the oligomers were larger than those observed for EphA2FL-GFP. Based on these results, we conclude that the EphA2 SAM domain inhibits kinase activity by reducing receptor oligomerization.


Subject(s)
Ephrin-A2/chemistry , Sterile Alpha Motif , Animals , Binding Sites , Cell Line , Cell Line, Tumor , Ephrin-A1/chemistry , Ephrin-A1/metabolism , Ephrin-A2/metabolism , Humans , Mice , Phosphorylation , Protein Binding , Protein Multimerization , Protein Processing, Post-Translational , Receptor, EphA2
SELECTION OF CITATIONS
SEARCH DETAIL
...