Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 11(7): e0159621, 2016.
Article in English | MEDLINE | ID: mdl-27472449

ABSTRACT

OBJECTIVE: Cohort selection is challenging for large-scale electronic health record (EHR) analyses, as International Classification of Diseases 9th edition (ICD-9) diagnostic codes are notoriously unreliable disease predictors. Our objective was to develop, evaluate, and validate an automated algorithm for determining an Autism Spectrum Disorder (ASD) patient cohort from EHR. We demonstrate its utility via the largest investigation to date of the co-occurrence patterns of medical comorbidities in ASD. METHODS: We extracted ICD-9 codes and concepts derived from the clinical notes. A gold standard patient set was labeled by clinicians at Boston Children's Hospital (BCH) (N = 150) and Cincinnati Children's Hospital and Medical Center (CCHMC) (N = 152). Two algorithms were created: (1) rule-based implementing the ASD criteria from Diagnostic and Statistical Manual of Mental Diseases 4th edition, (2) predictive classifier. The positive predictive values (PPV) achieved by these algorithms were compared to an ICD-9 code baseline. We clustered the patients based on grouped ICD-9 codes and evaluated subgroups. RESULTS: The rule-based algorithm produced the best PPV: (a) BCH: 0.885 vs. 0.273 (baseline); (b) CCHMC: 0.840 vs. 0.645 (baseline); (c) combined: 0.864 vs. 0.460 (baseline). A validation at Children's Hospital of Philadelphia yielded 0.848 (PPV). Clustering analyses of comorbidities on the three-site large cohort (N = 20,658 ASD patients) identified psychiatric, developmental, and seizure disorder clusters. CONCLUSIONS: In a large cross-institutional cohort, co-occurrence patterns of comorbidities in ASDs provide further hypothetical evidence for distinct courses in ASD. The proposed automated algorithms for cohort selection open avenues for other large-scale EHR studies and individualized treatment of ASD.


Subject(s)
Algorithms , Autism Spectrum Disorder/diagnosis , Electronic Health Records , Child , Child, Preschool , Cohort Studies , Female , Humans , Male
2.
J Biomed Inform ; 57: 124-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26190267

ABSTRACT

OBJECTIVE: To improve neonatal patient safety through automated detection of medication administration errors (MAEs) in high alert medications including narcotics, vasoactive medication, intravenous fluids, parenteral nutrition, and insulin using the electronic health record (EHR); to evaluate rates of MAEs in neonatal care; and to compare the performance of computerized algorithms to traditional incident reporting for error detection. METHODS: We developed novel computerized algorithms to identify MAEs within the EHR of all neonatal patients treated in a level four neonatal intensive care unit (NICU) in 2011 and 2012. We evaluated the rates and types of MAEs identified by the automated algorithms and compared their performance to incident reporting. Performance was evaluated by physician chart review. RESULTS: In the combined 2011 and 2012 NICU data sets, the automated algorithms identified MAEs at the following rates: fentanyl, 0.4% (4 errors/1005 fentanyl administration records); morphine, 0.3% (11/4009); dobutamine, 0 (0/10); and milrinone, 0.3% (5/1925). We found higher MAE rates for other vasoactive medications including: dopamine, 11.6% (5/43); epinephrine, 10.0% (289/2890); and vasopressin, 12.8% (54/421). Fluid administration error rates were similar: intravenous fluids, 3.2% (273/8567); parenteral nutrition, 3.2% (649/20124); and lipid administration, 1.3% (203/15227). We also found 13 insulin administration errors with a resulting rate of 2.9% (13/456). MAE rates were higher for medications that were adjusted frequently and fluids administered concurrently. The algorithms identified many previously unidentified errors, demonstrating significantly better sensitivity (82% vs. 5%) and precision (70% vs. 50%) than incident reporting for error recognition. CONCLUSIONS: Automated detection of medication administration errors through the EHR is feasible and performs better than currently used incident reporting systems. Automated algorithms may be useful for real-time error identification and mitigation.


Subject(s)
Analgesics, Opioid/therapeutic use , Intensive Care Units, Neonatal , Medication Errors , Patient Safety , Risk Management , Automation , Humans , Infant, Newborn , Intensive Care, Neonatal , Medical Order Entry Systems
3.
BMC Med Inform Decis Mak ; 15: 37, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25943550

ABSTRACT

BACKGROUND: In this study we implemented and developed state-of-the-art machine learning (ML) and natural language processing (NLP) technologies and built a computerized algorithm for medication reconciliation. Our specific aims are: (1) to develop a computerized algorithm for medication discrepancy detection between patients' discharge prescriptions (structured data) and medications documented in free-text clinical notes (unstructured data); and (2) to assess the performance of the algorithm on real-world medication reconciliation data. METHODS: We collected clinical notes and discharge prescription lists for all 271 patients enrolled in the Complex Care Medical Home Program at Cincinnati Children's Hospital Medical Center between 1/1/2010 and 12/31/2013. A double-annotated, gold-standard set of medication reconciliation data was created for this collection. We then developed a hybrid algorithm consisting of three processes: (1) a ML algorithm to identify medication entities from clinical notes, (2) a rule-based method to link medication names with their attributes, and (3) a NLP-based, hybrid approach to match medications with structured prescriptions in order to detect medication discrepancies. The performance was validated on the gold-standard medication reconciliation data, where precision (P), recall (R), F-value (F) and workload were assessed. RESULTS: The hybrid algorithm achieved 95.0%/91.6%/93.3% of P/R/F on medication entity detection and 98.7%/99.4%/99.1% of P/R/F on attribute linkage. The medication matching achieved 92.4%/90.7%/91.5% (P/R/F) on identifying matched medications in the gold-standard and 88.6%/82.5%/85.5% (P/R/F) on discrepant medications. By combining all processes, the algorithm achieved 92.4%/90.7%/91.5% (P/R/F) and 71.5%/65.2%/68.2% (P/R/F) on identifying the matched and the discrepant medications, respectively. The error analysis on algorithm outputs identified challenges to be addressed in order to improve medication discrepancy detection. CONCLUSION: By leveraging ML and NLP technologies, an end-to-end, computerized algorithm achieves promising outcome in reconciling medications between clinical notes and discharge prescriptions.


Subject(s)
Algorithms , Drug Prescriptions/standards , Machine Learning , Medication Reconciliation/standards , Natural Language Processing , Patient Discharge/standards , Adult , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...