Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Biomech (Bristol, Avon) ; 85: 105350, 2021 05.
Article in English | MEDLINE | ID: mdl-33878625

ABSTRACT

BACKGROUND: The sacroiliac joint fixation is the last resort for patients with prolonged and severe joint pain. Although the clinical results of anterior fixations are conclusive, there exist several inevitable drawbacks with the surgical method such as the difficulty performing the surgery due to the presence of many organs. The posterior fixation technique has thus been developed to overcome those inconveniences. This study aims to assess in silico the mechanical environment following posterior and anterior fixations, focusing on stresses in both the sacroiliac cartilage and dorsal ligamentous part, as well as loads experienced by the pelvic ligaments. METHODS: Sacroiliac joint cartilage, dorsal ligamentous part stresses and pelvic ligaments loads were evaluated with three types of fixation models. A vertical load of 600 N was applied, equally distributed via both acetabula when standing and sitting. FINDINGS: Results show that the anterior sacroiliac joint fixation reduced von Mises stresses in the cartilage and dorsal ligamentous part and decreased ligaments loads more extensively than the posterior fixation when compared to the untreated model as a reference. However, the posterior fixation still remains the desirable and preferential treatment. INTERPRETATION: The anterior sacroiliac joint fixation showed better performances compared to the posterior one; however, the lower invasive aspect of the latter is a fundamental clinical advantage which also has the possibility to be improved by considering various screws and cages configurations. This study provides a beneficial suggestion to improve the current fixation technique.


Subject(s)
Fracture Fixation, Internal , Sacroiliac Joint , Biomechanical Phenomena , Cartilage , Finite Element Analysis , Humans , Ligaments/surgery , Sacroiliac Joint/surgery
2.
PLoS One ; 11(9): e0163306, 2016.
Article in English | MEDLINE | ID: mdl-27685452

ABSTRACT

BACKGROUND: The ligaments in coherence with the capsule of the hip joint are known to contribute to hip stability. Nevertheless, the contribution of the mechanical properties of the ligaments and gender- or side-specific differences are still not completely clear. To date, comparisons of the hip capsule ligaments to other tissues stabilizing the pelvis and hip joint, e.g. the iliotibial tract, were not performed. MATERIALS & METHODS: Hip capsule ligaments were obtained from 17 human cadavers (9 females, 7 males, 13 left and 8 right sides, mean age 83.65 ± 10.54 years). 18 iliofemoral, 9 ischiofemoral and 17 pubofemoral ligaments were prepared. Uniaxial stress-strain properties were obtained from the load-deformation curves before the secant elastic modulus was computed. Strain, elastic modulus and cross sections were compared. RESULTS: Strain and elastic modulus revealed no significant differences between the iliofemoral (strain 129.8 ± 11.1%, elastic modulus 48.8 ± 21.4 N/mm2), ischiofemoral (strain 128.7 ± 13.7%, elastic modulus 37.5 ± 20.4 N/mm2) and pubofemoral (strain 133.2 ± 23.7%, elastic modulus 49.0 ± 32.1 N/mm2) ligaments. The iliofemoral ligament (53.5 ± 15.1 mm2) yielded a significantly higher cross section compared to the ischiofemoral (19.2 ± 13.2 mm2) and pubofemoral (15.2 ± 7.2 mm2) ligament. No significant gender- or side-specific differences were determined. A comparison to the published data on the iliotibial tract revealed lower elasticity and less variation in the ligaments of the hip joint. CONCLUSION: Comparison of the mechanical data of the hip joint ligaments indicates that their role may likely exceed a function as a mechanical stabilizer. Uniaxial testing of interwoven collagen fibers might lead to a misinterpretation of the mechanical properties of the hip capsule ligaments in the given setup, concealing its uniaxial properties. This underlines the need for a polyaxial test setup using fresh and non-embalmed tissues.

3.
J Orthop Res ; 32(7): 873-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24664964

ABSTRACT

Surgical stabilization of the pelvis following type II anteroposterior compression pelvic injuries (APCII) is based on the assumption that the anterior sacroiliac, sacrospinous, and sacrotuberous ligaments disrupt simultaneously. Recent data on the ligaments contradict this concept. We aimed at determining the mechanisms of ligament failure in APCII computationally. In an individual osteoligamentous computer model of the pelvis, ligament load, and strain were observed for the two-leg stance, APCII with 100-mm symphyseal widening and for two-leg stance with APCII-related ligament failure, and validated with body donors. The anterior sacroiliac and sacrotuberous ligaments had the greatest load with 80% and 17% of the total load, respectively. APCII causes partial failure of the anterior sacroiliac ligament and the pelvis to become horizontally instable. The other ligaments remained intact. The sacrospinous ligament was negligibly loaded but stabilized the pelvis vertically. The interosseous sacroiliac and sacrotuberous ligaments are likely responsible for reducing the symphysis and might serve as an indicator of vertical stability. The sacrospinous ligament appears to be of minor significance in APCII but plays an important role in vertical stabilization. Further research is necessary to determine the influence of alterations in ligament and bone material properties.


Subject(s)
Ligaments/injuries , Ligaments/surgery , Pelvic Bones/injuries , Pelvis/injuries , Pelvis/surgery , Pubic Symphysis/injuries , Sacroiliac Joint/injuries , Aged, 80 and over , Biomechanical Phenomena , Cartilage/pathology , Computer Simulation , Female , Finite Element Analysis , Humans , Ligaments, Articular/injuries , Male , Models, Anatomic , Software , Stress, Mechanical
4.
Clin Anat ; 27(5): 770-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24452928

ABSTRACT

Pelvic ring stability is maintained passively by both the osseous and the ligamentous apparatus. Therapeutic approaches focus mainly on fracture patterns, so ligaments are often neglected. When they rupture along with the bone after pelvic ring fractures, disrupting stability, ligaments need to be considered during reconstruction and rehabilitation. Our aim was to determine the influence of ligaments on open-book injury using two experimental models with body donors. Mechanisms of bone avulsion related to open-book injury were investigated. Open-book injuries were induced in human pelves and subsequently investigated by anatomical dissection and endoscopy. The findings were compared to CT and MRI scans of open-book injuries. Relevant structures were further analyzed using plastinated cross-sections of the posterior pelvic ring. A fragment of the distal sacrum was observed, related to open-book injury. Two ligaments were found to be responsible for this avulsion phenomenon: the caudal portion of the anterior sacroiliac ligament and another ligament running along the ventral surface of the third sacral vertebra. The sacral fragment remained attached to the coxal bone by this second ligament after open-book injury. These results were validated using plastination and the structures were identified. Pelvic ligaments are probably involved in sacral avulsion caused by lateral traction. Therefore, ligaments should to be taken into account in diagnosis of open-book injury and subsequent therapy.


Subject(s)
Fractures, Bone/etiology , Ligaments/injuries , Pelvic Bones/injuries , Sacrum/injuries , Aged , Aged, 80 and over , Biomechanical Phenomena , Cadaver , Female , Fractures, Bone/diagnostic imaging , Fractures, Bone/pathology , Humans , Magnetic Resonance Imaging , Male , Pelvic Bones/diagnostic imaging , Pelvic Bones/pathology , Sacrum/diagnostic imaging , Sacrum/pathology , Tomography, X-Ray Computed
5.
Spine J ; 13(10): 1321-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23755919

ABSTRACT

BACKGROUND CONTEXT: The influence of the posterior pelvic ring ligaments on pelvic stability is poorly understood. Low back pain and sacroiliac joint (SIJ) pain are described being related to these ligaments. Computational approaches involving finite element (FE) modeling may aid to determine their influence. Previous FE models lacked in precise ligament geometries and material properties, which might have influence on the results. PURPOSE AND STUDY DESIGN: The aim of this study is to investigate ligamentous influence in pelvic stability by means of FE using precise ligament material properties and morphometries. METHODS: An FE model of the pelvis bones was created from computer tomography, including the pubic symphysis joint (PSJ) and the SIJ. Ligament data were used from 55 body donors: anterior (ASL), interosseous (ISL), and posterior (PSL) sacroiliac ligaments; iliolumbar (IL), inguinal (IN), pubic (PL), sacrospinous (SS), and sacrotuberous (ST) ligaments; and obturator membrane (OM). Stress-strain data were gained from iliotibial tract specimens. A vertical load of 600 N was applied. Pelvic motion related to altered ligament and cartilage stiffness was determined in a range of 50% to 200%. Ligament strain was investigated in the standing and sitting positions. RESULTS: Tensile and compressive stresses were found at the SIJ and the PSJ. The center of sacral motion was at the level of the second sacral vertebra. At the acetabula and the PSJ, higher ligament and cartilage stiffnesses decrease pelvic motion in the following order: SIJ cartilage>ISL>ST+SS>IL+ASL+PSL. Similar effects were found for the sacrum (SIJ cartilage>ISL>IL+ASL+PSL) but increased ST+SS stiffnesses increased sacral motion. The influence of the IN, OM, and PL was less than 0.1%. Compared with standing, total ligament strain was reduced to 90%. Increased strains were found for the IL, ISL, and PSL. CONCLUSIONS: Posterior pelvic ring cartilage and ligaments significantly contribute to pelvic stability. Their effects are region- and stiffness dependent. While sitting, load concentrations occur at the IL, ISL, and PSL, which goes in coherence with the clinical findings of these ligaments serving as generators of low back pain.


Subject(s)
Biomechanical Phenomena/physiology , Finite Element Analysis , Ligaments/physiology , Pelvis/physiology , Compressive Strength , Humans , Male , Sacroiliac Joint , Tensile Strength
6.
J Mech Behav Biomed Mater ; 16: 81-6, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23178479

ABSTRACT

BACKGROUND AND AIMS: To understand biomechanics of ligaments and tendons data on their material properties are necessary. The iliotibial tract is a suitable model for virtual pelvic or lower extremity ligaments due to its parallel fibers, which facilitates biomechanical testing. Here, we determined Young's modulus (YM) as secant stiffness between defined limits of the iliotibial tract and correlated the data to ultimate stress (US) of the specimens and to age, gender and body weight of the body donors. MATERIALS AND METHODS: Thirty eight specimens from 12 iliotibial tracts of 10 young donors (mean age 31.2±9.1 years) were investigated biomechanically. After preconditioning, YM were determined in the ranges of 0-4 and 4-11 N/mm² of applied stress and from 4N/mm² of applied stress to US. RESULTS: YM of the specimens were 84.7±30.2 (0-4 N/mm²), 335.4±101.9 (4-11 N/mm²), and 369.1±191.5 (4 N/mm² to US) N/mm², respectively. The mean US was 35.8±16.4 N/mm². YM and US correlated closely in the ranges of 4-11 N/mm² (r=0.95) and 4 N/mm² to US (r=0.91). YM did not correlate to age, body weight or gender within these young donors. Concerning tissue behavior a decrease of YM, i.e. weakening, is more common than an increase of YM, i.e. stiffening, before specimen failure. Overall, YM of specimens from young donors were significantly lower compared to those of old donors. DISCUSSION AND CONCLUSIONS: This is the first study providing age-dependent nonlinear stiffness properties of the iliotibial tract. YM is significantly lower in young than in old donors and is thus a subject of alteration during life time.


Subject(s)
Aging , Connective Tissue/physiology , Fascia Lata/anatomy & histology , Stress, Mechanical , Adult , Biomechanical Phenomena , Elastic Modulus/physiology , Female , Humans , Male , Materials Testing , Middle Aged , Young Adult
7.
Med Eng Phys ; 34(9): 1221-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22297087

ABSTRACT

BACKGROUND AND OBJECTIVE: The iliotibial tract (tract) is an important structure for the biomechanics of both the hip and knee joint. While a detailed characterization of its mechanical properties might help to better understand its specific role in the load transfer from the pelvis to femur and tibia, determination of those properties is complicated by its particular structure of thin fibers in the fresh state. Moreover, although the tracts mechanical properties are often derived from cadaveric material chemically fixed with either ethanol or formaldehyde, the influence of such fixation methods remains to be elucidated. Aim of this study was to determine Young's modulus (tensile modulus, YM) of the tract. We hypothesized that either ethanol or formaldehyde fixation would significantly increase the YM compared to the tracts condition in a fresh state. MATERIAL AND METHODS: 13 specimens of tract were gained from donators. The ends of the probes were plastinated with resin creating a sharp interface between the clamp and the probe to prevent material slippage. The specimens were measured in their fresh state, under ethanol- and formaldehyde-fixed conditions and re-measured after rinsing with tap water. RESULTS: The YM of the fresh probes averaged 397.3N/mm(2) with a standard deviation (SD) of 151.5N/mm(2). The YM of the ethanol-fixed specimens was significantly higher (673.2N/mm(2), SD 328.5N/mm(2), p<0.05). After rinsing with tap water, the YM decreased to 95% of the fresh condition value (377.4N/mm(2), SD 144.5N/mm(2), non-significant change from fresh). After formaldehyde fixation, the YM reached 490.3N/mm(2) (SD 143.0N/mm(2), p<0.05). When the formaldehyde-fixed specimens were rinsed, the YM was 114% of the value of the fresh condition (452.6N/mm(2), SD 115.1N/mm(2), non-significant change from fresh). CONCLUSIONS: This study found a significant influence of the chemical fixation method on the YM of the IT tract. If such fixation is required, our results suggest using a treatment with ethanol and subsequent rinsing that results in minimal changes to the tracts YM. Furthermore, plastination of the ends of the specimens could be crucial to allow in vitro determination of valid YM of ligaments data that can then be integrated with confidence in further finite element analyses.


Subject(s)
Elastic Modulus/drug effects , Ethanol/pharmacology , Fascia Lata/drug effects , Formaldehyde/pharmacology , Tissue Fixation/methods , Humans , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL