Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 127(45): 9502-9512, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37922399

ABSTRACT

In an effort to provide the first accurate structural and spectroscopic characterization of the quasi-linear chain HONCO in its electronic ground state, state-of-the-art computational approaches mainly based on coupled-cluster (CC) theory have been employed. Equilibrium geometries have been calculated by means of a composite scheme based on CC calculations that incorporates up to the quadruple excitations and accounts for the extrapolation to the complete basis set limit and core correlation effects. This approach is proven to provide molecular structures with an accuracy better than 0.001 Å and 0.05° for bond lengths and angles, respectively. Incorporation of vibrational effects permits this level of theory to predict rotational constants with an estimated accuracy of 0.1% or better. Vibrational fundamental bands have been evaluated by means of a hybrid scheme based on harmonic frequencies computed using the CC singles, doubles, and a perturbative treatment of the triples method (CCSD(T)) in conjunction with a quadruple-ζ basis set, with all electrons being correlated, and anharmonic corrections from CCSD(T) calculations using a triple-ζ basis set, within the frozen-core approximation. Such a hybrid approach allowed us to obtain fundamental frequencies with a mean absolute error of about 1%. To complete the spectroscopic characterization, vertical electronic excitation energies have been calculated for the lowest singlet and triplet states using the internally contracted multireference configuration interaction (MRCI) method. Computations show that HONCO dissociates into OH + NCO upon the absorption of UV-vis light. In conclusion, we are confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and supporting the characterization of this molecule in atmospheric and astrophysical media, as well as in combustion.

2.
Commun Chem ; 6(1): 137, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400533

ABSTRACT

Conventional electron spectroscopy is an established one-electron-at-the-time method for revealing the electronic structure and dynamics of either valence or inner shell ionized systems. By combining an electron-electron coincidence technique with the use of soft X-radiation we have measured a double ionisation spectrum of the allene molecule in which one electron is removed from a C1s core orbital and one from a valence orbital, well beyond Siegbahns Electron-Spectroscopy-for-Chemical-Analysis method. This core-valence double ionisation spectrum shows the effect of symmetry breaking in an extraordinary way, when the core electron is ejected from one of the two outer carbon atoms. To explain the spectrum we present a new theoretical approach combining the benefits of a full self-consistent field approach with those of perturbation methods and multi-configurational techniques, thus establishing a powerful tool to reveal molecular orbital symmetry breaking on such an organic molecule, going beyond Löwdins standard definition of electron correlation.

3.
J Phys Chem A ; 126(44): 8119-8126, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36301594

ABSTRACT

The electronic structure and spectroscopy of the 29 lowest electronic states of the AuO+ cation were studied using ab initio multiconfigurational methods. These states correlate to the Au+(1S) + O(3P) and Au+(3D) + O(3P) dissociation limits. Their potentials were calculated along the Au-O internuclear distance. There are 23 of these electronic states with potential wells deep enough to allow for long lifetimes of the AuO+ cation in the corresponding states. These bound electronic states were characterized spectroscopically by solving the radial Schrödinger equation for the nuclear motion, to deduce full sets of spectroscopic parameters. The effects of the spin-orbit coupling on the lowest electronic states have been studied by determining the potentials and spectroscopic constants of the seven lowest spin-orbit Ω components. We also carried out precise calculations to determine the adiabatic ionization energy of the AuO molecule, where several corrections of the electronic energies obtained with the standard coupled cluster approach were taken into account. Our results will facilitate the correct assignment of the IR, vis, and UV spectra of the AuO+ cation and the photoelectron spectrum of the neutral AuO diatomic.

4.
Inorg Chem ; 60(23): 17966-17975, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34699196

ABSTRACT

The dissociations of nascent Fe(CO)5++ ions created by 40.81 eV photoionization of iron pentacarbonyl have been examined using threefold and fourfold electron-ion coincidence measurements. The energies and forms of the ions have been explored by high-level calculations, revealing several new structures. The most stable form of Fe(CO)5++ has a quite different geometry from that of the neutral molecule. The dissociation pattern can be modeled as a sequence of CO evaporations followed by two-body charge separations. Each Fe(CO)n++ (n = 1-4) dication is stable in a restricted energy range; as its internal energy increases, it first ejects a neutral CO, then loses CO+ by charge separation at higher energy. In the initial stages, charge-retaining CO evaporations dominate over charge separation, but the latter become more competitive as the number of residual CO ligands decreases. At energies where ionization is mainly from the CO ligands, new Fe-C and C-C bonds are created by a mechanism which might be relevant to catalysis by Fe.

5.
J Phys Chem A ; 125(9): 1958-1971, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33635674

ABSTRACT

We use accurate ab initio methodologies at the coupled cluster level ((R)CCSD(T)) and its explicitly correlated version ((R)CCSD(T)-F12) to investigate the electronic structure, relative stability, and spectroscopy of the stable isomers of the [S2O2] system and of some of its cations and dications, with a special focus on the most relevant isomers that could be involved in terrestrial and planetary atmospheres. This work identifies several stable isomers (10 neutral, 8 cationic, and 5 dicationic), including trigonal-OSSO, cis-OSSO, and cyc-OSSO. For all these isomers, we calculated geometric parameters, fragmentation energies, and simple and double ionization energies of the neutral species. Several structures are identified for the first time, especially for the ionic species. Computations show that in addition to cis-OSSO and trans-OSSO proposed for the absorption in the near-UV spectrum of the Venusian atmosphere other S2O2, S2O2+, and S2O22+ species may contribute. Moreover, the characterization of the stability of singly and doubly charged S2O2 entities can also be used for their identification by mass spectrometry and UV spectroscopy in the laboratory or in planetary atmospheres. In sum, the quest for the main UV absorber in Venus' atmosphere is not over, since the physical chemistry of sulfur oxides in Venus' atmosphere is far from being understood.

6.
J Phys Chem A ; 124(52): 11061-11071, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33347316

ABSTRACT

We carried out a theoretical, fully ab initio, investigation of the stable forms of the [H,C,N,O,O] pentatomic molecular system, whose isomers are involved in fundamental combustion and atmospheric processes and are of potential interest for astrophysics. By adopting the MP2 and CCSD(T) electronic structure methods, combined with extrapolations to the complete basis set (CBS) limit, we characterized 20 low-energy isomers, excluding weak van der Waals complexes. For these molecules, we determined a set of geometrical parameters, relative energies, anharmonic vibrational frequencies, IR intensities, and fragmentation/formation energies from various atomic and/or molecular fragments. We discuss the relevance of the present findings for the search of new molecular species in astrophysical and atmospheric media and give suggestions for their possible detection in laboratory experiments. The set of data provided by the present work should facilitate the identification of these species from their gas-phase and low-temperature solid matrix spectra, whenever measured.

7.
J Mol Model ; 26(10): 282, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32974734

ABSTRACT

The magnetic exchange coupling between two diuranium(V) ions exhibiting the 5f1-5f1 configuration in diimide-bridged complexes [Cp3UV]2(µ-L) (L = stilbene-, naphthalene-diimide) has been investigated theoretically using relativistic ZORA/DFT calculations. Using two different hybrid PBE0 and B3LYP functionals, combined with the broken symmetry (BS) approach, we found that the BS states of both naphthalene and stilbene complexes have lower energy than the corresponding high-spin (HS) triplet ones. The B3LYP/BS estimated exchange coupling J constants (- 16.1 vs. - 9.0 cm-1 respectively for the naphthalene and stilbene complexes) corroborate well with those obtained previously for other pentavalent diuranium(V) diimide-bridged systems. The computed J value is found to be sensitive to π-network linking the two magnetic U(V) centers. The natural spin density distributions and molecular orbital analyses explain well the antiferromagnetic character of these compounds and clarify the crucial role of the π aromatic spacer in promoting spin polarization and delocalization favoring the magnetic coupling. Furthermore, the effective involvement of the 6d/5f metal orbitals in metal-ligand bonding plays an important role for the magnetic communication between the two active U(V) 5f electrons. Graphical abstract.

8.
Phys Chem Chem Phys ; 22(30): 17052-17061, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32658239

ABSTRACT

Sulfenyl thiocyanate compounds, RSSCN, are involved in the human immune system biochemical processes. They are also the routes for the synthesis of complex S-containing species such as polypeptides, or symmetrical (RSSR) and unsymmetrical disulfides (RSSR'). At present, we have characterized the stable forms of the simplest sulfenyl thiocyanate compound, HSSCN, at the coupled cluster level. We found twenty-three isomers, for which we determined a set of structural parameters, anharmonic frequencies and reaction energies for the formation of the corresponding diatomic + triatomic and atomic + tetratomic fragments. We also discussed the implications of the present findings for biological entities containing a disulfide bridge, where we identified three isomers that may serve as prototypes. Similarities and differences with other S/N hybrid bioactive molecules are also discussed. From an astrophysical point of view, we expect HSSCN isomers to be present in astrophysical media, since several of their molecular fragments have already been detected. In sum, the present set of data can be used for the identification of HSSCN compounds and understanding the physical chemistry of sulfur containing molecules in vivo, in the laboratory and in astrophysical media.


Subject(s)
Spectrum Analysis , Thiocyanates/chemistry , Isomerism , Thiocyanates/metabolism
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 217: 278-287, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30952094

ABSTRACT

By using first-principles approaches based on Density Functional Theory, we explore the possibility of using dendritic macromolecular structures as carriers of the doxorubicin anticancer drug. In particular, we consider macromolecular cavities of different sizes composed of phenylene-, thiophene-, phenyl-cored thiophen- and thioazole-based dendrimers. The comparison between the optimized molecular geometries of the monomers and of the host-guest complexes reveals that only slight structural changes are observed in doxorubicin upon complexation. Also, the encapsulation energies for the host-guest complexes suggest that these systems are of potential use for pharmacology applications in vivo. The interaction of the guest doxorubicin with the macromolecular cavities exploits different types of weak intermolecular forces including σ, π and hydrogen bond interactions. The electronic structure of these complexes is discussed, with particular emphasis placed on the role of the charge distribution and the nature of the frontier molecular orbitals in the encapsulation process. Spectroscopic properties of these complexes are derived to facilitate their detection in laboratory and in vivo. These include IR vibrational frequencies, absorption wavelengths and relative oscillator strengths for the main transitions in the UV-Vis spectrum.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Dendrimers/chemistry , Doxorubicin/chemistry , Liposomes/chemistry , Macromolecular Substances/chemistry , Models, Theoretical , Antibiotics, Antineoplastic/metabolism , Benchmarking , Capsules , Dendrimers/metabolism , Doxorubicin/metabolism , Liposomes/metabolism , Macromolecular Substances/metabolism , Quantum Theory , Thermodynamics
11.
J Phys Chem A ; 122(24): 5354-5360, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29807421

ABSTRACT

Using multi configurational ab initio methodologies, we compute the potential energy curves (PECs) of the lowest electronic states of the diatomic CsS. These computations are performed using internally contracted multireference interaction configuration including Davidson correction (MRCI+Q) with and without considering spin-orbit effects. The shapes of the PECs are governed by the interactions between the two ionic states, 2Σ+ and 2Π, correlating at large internuclear separations ( RCsS) to the first ionic dissociation limit and the other electronic states correlating to the three lowest neutral dissociation limits. Computations show the importance of considering a large amount of electron correlation for the accurate description of the PECs and spectroscopy of this molecular system. As expected, these PECs are also strongly affected by the spin-orbit interaction. For the bound states, we report a set of spectroscopic parameters including equilibrium distances, dissociation energies, and vibrational and rotational constants. The effects of spin-orbit-induced changes on these parameters are also discussed. Moreover, we show that the 22Π state presents a "bowl" potential with a rather flat region extending to large RCsS distances. After being promoted to this state, wavepackets should undergo strong oscillations, similar to those observed by Zewail and co-workers for the NaI molecule. These should provide information on the shape of the PEC for the 22Π state and also on the couplings between this and the neighboring states.

12.
J Chem Phys ; 147(2): 024302, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28711038

ABSTRACT

A set of accurate spectroscopic parameters for the detection of the atmospherically important HOC(O)O radical has been obtained by means of state-of-the-art ab initio computations. These include advanced coupled cluster treatments, involving both standard and explicitly correlated approaches, to correctly account for basis set incompleteness and core-valence effects. Geometric parameters for the X̃2A' and Ã2A'' states and, for the ground state only, vibrationally corrected rotational constants including quartic and sextic centrifugal distortion terms are reported. The infrared spectrum of the X̃2A' state has been simulated in the 4000-400 cm-1 wavenumber interval with an approach based on second order vibrational perturbation theory that allows accounting for anharmonic effects in both energies and intensities. Finally, the vibronic spectrum for the à ← X̃ transition has been calculated at three different temperatures in the 9000-3000 cm-1 energy range with a time-independent technique based on the Franck-Condon approximation.

13.
J Chem Phys ; 146(14): 144303, 2017 Apr 14.
Article in English | MEDLINE | ID: mdl-28411610

ABSTRACT

The hydroxymethyl peroxy (HMOO) radical is a product of the oxidation of non-methane hydrocarbons. The present study provides the first accurate computational determination of critical spectroscopic features of the title radical that should aid in its experimental characterization. Structure, energetics, vibrational frequencies, and rotational parameters are reported for the three stable isomers on the ground electronic state of HMOO. While preliminary computations have been carried out using density functional theory as well as second-order Møller-Plesset perturbation theory, for the accurate structural and spectroscopic characterization we made use of coupled-cluster techniques, herewith considering both standard and explicitly correlated methods. The "CCSD(T)/CBS + CV" composite scheme, a state-of-the-art composite approach based on the coupled-cluster theory including single and double excitations together with a perturbative treatment of triples that accounts for extrapolation to the complete basis-set limit as well as core-valence correlation effects, is used to obtain accurate structural and energetic data, in particular for the decomposition reaction to HO2 and H2CO.

14.
J Am Chem Soc ; 138(36): 11509-12, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27575523

ABSTRACT

The simplest N-sulfonylamine HNSO2 has been generated in the gas phase through flash vacuum pyrolysis of methoxysulfonyl azide CH3OS(O)2N3. Its identification was accomplished by combining matrix-isolation IR spectroscopy and quantum chemical calculations. Both experimental and theoretical evidence suggest a stepwise decomposition of the azide via the methoxysulfonyl nitrene CH3OS(O)2N, observed in the 193 nm laser photolysis of the azide, with concerted fragmentation into CH2O and HNSO2. Upon the 193 nm laser irradiation, HNSO2 isomerizes into the novel N-hydroxysulfinylamine HONSO.

15.
J Chem Phys ; 144(8): 084306, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-26931701

ABSTRACT

The HOC(O)O radical is a product of the reaction of HOCO radicals with oxygen atoms. The present study provides theoretical prediction of critical spectroscopic features of this radical that should aid in its experimental characterization. Energies, structures, rotational constants, and harmonic frequencies are presented for the ground and two low-lying excited electronic states of HOC(O)O. The energies for the Ã(2)A″←X̃(2)A' and B̃(2)A'←X̃(2)A' electronic transitions are reported. The band origin of the B̃←X̃ transition of HOC(O)O is predicted to occur in the near infrared region of the spectrum at around 1.5 eV and it is suggested to be the most promising one for observing this radical spectroscopically. The structural and spectroscopic similarities between HOC(O)O and the isoelectronic radical FC(O)O are discussed. The abundance of experimental data on the FC(O)O radical should guide the spectroscopic characterization of HOC(O)O and serve as a benchmark for the structural and spectroscopic parameters obtained from theory.

16.
J Chem Phys ; 143(13): 134301, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26450308

ABSTRACT

Results are presented that suggest that thiazyl hydride (HSN)/thionitrosyl hydride (sulfimide, HNS) can be used as light-sensitive compounds for NO-delivery in biological media, as well as markers for the possible detection of intermediates in nitrites + H2S reactions at the cellular level. They are expected to be more efficient than the HNO/HON isovalent species and hence they should be considered instead. A set of characteristic spectroscopic features are identified that could aid in the possible detection of these species in the gas phase or in biological environments. The possibility of intramolecular dynamical processes involving excited states that are capable of interconverting HNS and its isomeric form HSN is examined.


Subject(s)
Light , Nitric Oxide/chemistry , Nitrogen Oxides/chemistry , Thiazoles/chemistry , Electrons , Quantum Theory
17.
J Mol Model ; 20(3): 2135, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24549795

ABSTRACT

In the present theoretical work, we investigated the stationary points (minima and transition states) on the ground state potential energy surfaces of neutral and ionic 1,4-diazabicyclo[2.2.2]octane (DABCO)--Ar(n)°,⁺¹ (n = 1-4) clusters. As established in our systematic work on DABCO--Ar cluster (Mathivon et al., J Chem Phys 139:164306, 2013), the (R)MP2/aug-cc-pVDZ level is accurate enough for validating the prediction of stable forms. For n = 1 and 2, further computations at the MP2/aug-cc-pVTZ level confirm these assumptions. We show that some of the already known isomers of these heteroclusters derived using lower levels of theory are not realistic. More interestingly, our work reveals that DABCO is subject to slight deformations when binding to a small number of Ar atoms. Moreover, we computed the potential energy surfaces of the lowest singlet electronic states of DABCO--Ar(n)(n = 1-3) and of DABCO⁺--Ar(n)(n = 1-3), and the transition moments for the Sp(p = 1-3) ← S0 neutral transitions. These electronic states are found to be Rydberg in nature. The shape of their potentials is mainly repulsive with slight stabilization in the S2 potentials. Finally, the effects of microsolvation of DABCO in Ar clusters in ground and electronic excited states are discussed. The photophysical and photochemical dynamics of these electronic states may be complex.


Subject(s)
Argon/chemistry , Azabicyclo Compounds/chemistry , Models, Molecular , Organometallic Compounds/chemistry , Computer Simulation , Electrons , Ions/chemistry , Isomerism , Kinetics , Molecular Structure , Quantum Theory , Thermodynamics
18.
J Chem Phys ; 139(23): 234304, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24359364

ABSTRACT

Using state-of-the-art theoretical methods, we investigate the lowest electronic states of singlet and triplet spin multiplicities of HSNO. These computations are done using configuration interaction ab initio methods and the aug-cc-pV5Z basis set. One-dimensional cuts of the six-dimensional potential energy surfaces of these electronic states along the HS, SN stretches and HSN, SNO bending and torsion coordinates are calculated. Several avoided crossings and conical intersections are found. We computed also radiative lifetimes and spin-orbit couplings of these electronic states. Our work shows that the dynamics on these excited states is very complex, and suggest that multi-step mechanisms will populate the ground state via radiationless processes or lead to predissociation or intramolecular isomerization. For instance, these potentials are used to propose mechanisms for the IR, Vis, and UV light-induced cis-trans interconversions of HSNO and reactivity towards HS + NO and H + SNO products. Our findings are in good agreement with previous experimental studies on the photochemistry of HSNO. The atmospheric implication of HSNO is also discussed.


Subject(s)
Computer Simulation , Nitric Oxide Donors , S-Nitrosothiols/chemistry , Biological Phenomena/physiology , Nitric Oxide Donors/chemistry
19.
J Chem Phys ; 139(16): 164306, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182028

ABSTRACT

We investigate the intermolecular 1,4-diazabicyclo [2.2.2] octane (DABCO) interaction potential with He, Ne, Ar, and Kr rare gases (Rg) by means of post Hartree-Fock and the newly implemented explicitly correlated coupled cluster approaches in connection with several basis sets. After benchmarking computations, we show that the inclusion of diffuse atomic orbitals is mandatory for the accurate description of structures, energetics, and spectroscopic properties of DABCO-Rg van der Waals clusters and that the (R)MP2∕aug-cc-pVXZ (X = D, T) level is accurate enough for that purposes. For the neutral and ionic DABCO-Rg complexes, we characterized the low energy stationary points on the ground state potential. Most of the computed structures show a distortion along the low frequency mode of the van der Waals complex. Tunneling through this potential barrier leads to a splitting of the ground vibrational levels of several cm(-1). Our results served to reassign the available experimental spectra for DABCO(0,+1)-Ar and DABCO(0,+1)-Kr.

20.
J Chem Phys ; 139(17): 174313, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24206304

ABSTRACT

Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS(x) and HSP(x) (x = -1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality. By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm(-1) above the minima of the corresponding PESs.

SELECTION OF CITATIONS
SEARCH DETAIL
...