Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10556, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719847

ABSTRACT

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Subject(s)
Fertilizers , Glycine max , Nickel , Soil , Glycine max/growth & development , Glycine max/drug effects , Glycine max/metabolism , Fertilizers/analysis , Soil/chemistry , Urease/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/drug effects , Nitrogen Fixation/drug effects , Nitrogen/metabolism , Photosynthesis/drug effects , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Agriculture/methods
2.
Plant Physiol Biochem ; 208: 108446, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422579

ABSTRACT

Adaptive responses to abiotic stresses such as soil acidity in Eucalyptus-the most widely planted broad-leaf forest genus globally-are poorly understood. This is particularly evident in physiological and anatomical disorders that inhibit plant development and wood quality. We aimed to explore how the supply of Ca and Mg through liming (lime), combined with Cu and Zn fertilization (CZF), influences physiological and anatomical responses during Eucalyptus grandis seedlings growth in tropical acid soil. Therefore, related parameters of leaf area and leaf anatomy, stomatal size, leaf gas exchange, antioxidant system, nutrient partitioning, and biomass allocation responses were monitored. Liming alone in Eucalyptus increased specific leaf area, stomatal density on the abaxial leaf surface, and Ca and Mg content. Also, Eucalyptus exposed only to CZF increased Cu and Zn content. Lime and CZF increased leaf blade and adaxial epidermal thickness, and improved the structural organization of the spongy mesophyll, promoting increased net CO2 assimilation, and stomatal conductance. Fertilization with Ca, Mg, Cu, and Zn positively affects plant nutrition, light utilization, photosynthetic rate, and antioxidant performance, improving growth. Our results indicate that lime and CZF induce adaptive responses in the physiological and anatomical adjustments of Eucalyptus plantation, thereby promoting biomass accumulation.


Subject(s)
Calcium Compounds , Eucalyptus , Oxides , Seedlings , Seedlings/metabolism , Eucalyptus/metabolism , Antioxidants/metabolism , Plant Leaves/metabolism , Photosynthesis/physiology , Soil , Zinc/metabolism
3.
Physiol Plant ; 175(6): e14085, 2023.
Article in English | MEDLINE | ID: mdl-38148209

ABSTRACT

Foliar N-fertilization (FNf) has emerged as a promising approach to synchronize plant nitrogen (N) demands and application timing, reducing the N losses to the environment associated with traditional soil-based fertilization methods. However, limited information exists regarding the effectiveness of FNf in sugarcane. This study aimed to optimize FNf in sugarcane by evaluating N-fertilizer recovery by the plant (NRP) and assessing potential toxicity effects. Four sugarcane genotypes were subjected to FNf using 15 N-urea at five nitrogen concentrations. NRP was assessed at five time points for roots, stalk, old leaves, 15 N-urea-fertilized leaves (15 NL), and unexpanded leaves (UEL). Leaf scorching, indicating FNf toxicity, was analyzed using morpho-anatomical and histochemical techniques. The results showed that FNf promoted high NRP, with an average recovery of 62.3%. Surprisingly, the redistribution of 15 N-urea did not follow the nitrogen uptake rate by sugarcane leaves, with an average of 41.3% of the total-NRP. The stalk emerged as the primary sink for 15 N-urea, followed by the UEL. Genotypes differed in the leaf scorching intensity, which increased with higher concentration of 15 N-urea. Genotypes also differed in the 15 N-urea uptake rate, down-regulated by the N content in the 15 NL. These findings emphasize that by carefully choosing the appropriate genotype and nitrogen concentration, FNf can significantly enhance N-fertilizer uptake, resulting in potential environmental and economic benefits.


Subject(s)
Saccharum , Saccharum/genetics , Fertilizers/analysis , Soil/chemistry , Nitrogen/chemistry , Urea
4.
J Hazard Mater ; 447: 130771, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36696772

ABSTRACT

It has been speculated that selenium (Se) supply can affect cadmium (Cd) 'availability' and increase the Cd tolerance of plants used for phytoextraction, in a pH-dependent process. Thus, we evaluated the interaction Cd-Se and the effects of soil pH in this interaction on plant availability of Cd and phytoextraction efficiency of Urochloa decumbens cv. Basilisk grown in Oxisol. Two soil concentrations of Cd (0.93 and 3.6 mg kg-1) and Se (<0.2 and 1 mg kg-1) and two soil pH (0.01 mol L-1 CaCl2) conditions (4.1 and 5.7) were considered. At both pH, Se supply increased the exchangeable fraction of Cd and decreased the residual Cd fraction. At pH 4.1, the growth of U. decumbens was impaired by Se addition, regardless of Cd exposure. The lower root growth and tillering of U. decumbens exposed to Cd disappeared at pH 5.7 due to uptake of low Se concentrations. Thus, the toxic or beneficial effects of Se on growth of U. decumbens used for Cd phytoextraction depend on the amount of Se assimilated. The Cd phytoextraction efficiency of U. decumbens was not improved by Se supply, regardless of soil pH. Therefore, we cannot recommend the application of Se to increase Cd phytoextraction by this grass.


Subject(s)
Selenium , Soil Pollutants , Soil , Cadmium/analysis , Poaceae , Hydrogen-Ion Concentration , Soil Pollutants/analysis , Biodegradation, Environmental
6.
Sci Rep ; 11(1): 20158, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635753

ABSTRACT

This work aimed to investigate the partial K-replacement by Na supply to alleviate drought-induced stress in Eucalyptus species. Plant growth, leaf gas exchange parameters, water relations, oxidative stress (H2O2 and MDA content), chlorophyll concentration, carbon (C) and nitrogen (N) isotopic leaf composition (δ13C and δ15N) were analyzed. Drought tolerant E. urophylla and E. camaldulensis showed positive responses to the partial K substitution by Na, with similar dry mass yields, stomatal density and total stomatal pore area relative to the well K-supplied plants under both water conditions, suggesting that 50% of the K requirements is pressing for physiological functions that is poorly substituted by Na. Furthermore, E. urophylla and E. camaldulensis up-regulated leaf gas exchanges, leading to enhanced long-term water use efficiency (WUEL). Moreover, the partial K substitution by Na had no effects on plants H2O2, MDA, δ13C and δ15N, confirming that Na, to a certain extent, can effectively replace K in plants metabolism. Otherwise, the drought-sensitive E. saligna species was negatively affected by partial K replacement by Na, decreasing plants dry mass, even with up-regulated leaf gas exchange parameters. The exclusive Na-supplied plants showed K-deficient symptoms and lower growth, WUEL, and δ13C, besides higher Na accumulation, δ15N, H2O2 and MDA content.


Subject(s)
Carbon Dioxide/metabolism , Carbon Radioisotopes/analysis , Eucalyptus/growth & development , Nitrogen Radioisotopes/analysis , Plant Leaves/growth & development , Potassium/metabolism , Sodium/metabolism , Droughts , Eucalyptus/metabolism , Photosynthesis , Plant Leaves/metabolism
7.
Physiol Plant ; 173(1): 20-44, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32602985

ABSTRACT

We evaluated the mechanisms that control Cd accumulation and distribution, and the mechanisms that protect the photosynthetic apparatus of Brachiaria decumbens Stapf. cv. Basilisk and Panicum maximum Jacq. cv. Massai from Cd-induced oxidative stress, as well as the effects of simulated summer or winter conditions on these mechanisms. Both grasses were grown in unpolluted and Cd-polluted Oxisol (0.63 and 3.6 mg Cd kg-1 soil, respectively) at summer and winter conditions. Grasses grown in the Cd-polluted Oxisol presented higher Cd concentration in their tissues in the winter conditions, but the shoot biomass production of both grasses was not affected by the experimental conditions. Cadmium was more accumulated in the root apoplast than the root symplast, contributing to increase the diameter and cell layers of the cambial region of both grasses. Roots of B. decumbens were more susceptible to disturbed nutrients uptake and nitrogen metabolism than roots of P. maximum. Both grasses translocated high amounts of Cd to their shoots resulting in oxidative stress. Oxidative stress in the leaves of both grasses was higher in summer than winter, but only in P. maximum superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were increased. However, CO2 assimilation was not affected due to the protection provided by reduced glutathione (GSH) and phytochelatins (PCs) that were more synthesized in shoots than roots. In summary, the root apoplast was not sufficiently effective to prevent Cd translocation from roots to shoot, but GSH and PCs provided good protection for the photosynthetic apparatus of both grasses.


Subject(s)
Brachiaria , Panicum , Soil Pollutants , Antioxidants , Cadmium , Oxidative Stress , Plant Roots/chemistry , Weather
8.
Chemosphere ; 243: 125362, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31759212

ABSTRACT

Previous studies have unraveled contrasting Al genotypic differences between Urochloa brizantha cv. Marandu (moderately tolerant) and Urochloa brizantha cv. Xaraés (more tolerant). Our objective was to evaluate differences in the response to Al-induced stress between these genotypes, focusing on Al compartmentation in the root apoplast and symplast, and antioxidant enzyme activities after Al exposure. Al-accumulation was 25% higher in the roots of cv. Xaraés than cv. Marandu, while in the shoot Al accumulation was 150% higher in cv. Marandu than cv. Xaraés. U. brizantha cv. Marandu accumulated 73% of the Al absorbed in the root symplast and 27% in the root apoplast, while cv. Xaraés accumulated 61% of the Al absorbed in symplast and 39% in apoplast. Furthermore, Al exposure leaded to physiological and developmental changes in root morphology, such as disorganization of vascular system, the collapse of cortical cells and absence of root hairs from the root tip, with more drastic effects detectable in cv. Marandu. Catalase (CAT) and guaiacol peroxidase (GPOX) activities in the roots of cv. Marandu were lower compared to cv. Xaraés. Our results pointed out that higher Al compartmentalization rates in the root apoplast, altogether with up-regulated metabolic activities of CAT and GPOX and also lower long distance transport of Al are seemingly at the base of the Al tolerance in cv. Xaraés. In conclusion, biochemical analysis of roots suggested that understanding of metabolic pathways is one of pressing approach to elucidate stress tolerance mechanisms in this genus.


Subject(s)
Aluminum/metabolism , Brachiaria/physiology , Soil Pollutants/metabolism , Aluminum/toxicity , Antioxidants/metabolism , Brachiaria/metabolism , Catalase/metabolism , Genotype , Oxidation-Reduction , Peroxidase , Plant Roots/drug effects , Soil Pollutants/toxicity
9.
Curr Opin Plant Biol ; 11(1): 23-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18060829

ABSTRACT

Perhaps the most amazing feature of plants is their ability to grow and regenerate for years, sometimes even centuries. This fascinating characteristic is achieved thanks to the activity of stem cells, which reside in the shoot and root apical meristems. Stem cells function as a reserve of undifferentiated cells to replace organs and sustain postembryonic plant growth. To maintain meristem function, stem cells have to generate new cells at a rate similar to that of cells leaving the meristem and differentiating, thus achieving a balance between cell division and cell differentiation. Recent findings have improved our knowledge on the molecular mechanisms necessary to establish this balance and reveal a fundamental signaling role for the plant hormone cytokinin. Evidence has been provided to show that in the root meristem cytokinin acts in defined developmental domains to control cell differentiation rate, thus controlling root meristem size.


Subject(s)
Cell Differentiation , Cytokinins/biosynthesis , Homeostasis/physiology , Meristem/physiology , Plants/metabolism , Cytokinins/metabolism , Plant Cells
10.
Curr Biol ; 17(8): 678-82, 2007 Apr 17.
Article in English | MEDLINE | ID: mdl-17363254

ABSTRACT

Plant postembryonic development takes place in the meristems, where stem cells self-renew and produce daughter cells that differentiate and give rise to different organ structures. For the maintenance of meristems, the rate of differentiation of daughter cells must equal the generation of new cells: How this is achieved is a central question in plant development. In the Arabidopsis root meristem, stem cells surround a small group of organizing cells, the quiescent center. Together they form a stem cell niche [1, 2], whose position and activity depends on the combinatorial action of two sets of genes - PLETHORA1 (PLT1) and PLETHORA2 (PLT2)[3, 4] and SCARECROW (SCR) and SHORTROOT (SHR)[2] - as well as on polar auxin transport. In contrast, the mechanisms controlling meristematic cell differentiation remain unclear. Here, we report that cytokinins control the rate of meristematic cell differentiation and thus determine root-meristem size via a two-component receptor histidine kinase-transcription factor signaling pathway. Analysis of the root meristems of cytokinin mutants, spatial cytokinin depletion, and exogenous cytokinin application indicates that cytokinins act in a restricted region of the root meristem, where they antagonize a non-cell-autonomous cell-division signal, and we provide evidence that this signal is auxin.


Subject(s)
Arabidopsis/cytology , Cell Differentiation , Cytokinins/metabolism , Meristem/cytology , Plant Roots/cytology , Arabidopsis/metabolism , Plant Roots/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...