Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Science ; 383(6689): 1325-1331, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38513015

ABSTRACT

Propylene production through propane dehydrogenation (PDH) is endothermic, and high temperatures required to achieve acceptable propane conversions lead to low selectivity and severe carbon-induced deactivation of conventional catalysts. We developed a catalyst-membrane system that removes the hydrogen by-product and can thus achieve propane conversions that exceed equilibrium limits. In this codesigned system, a silica/alumina (SiO2/Al2O3) hollow-fiber hydrogen membrane was packed with a selective platinum-tin (Pt1Sn1/SiO2) PDH catalyst on the tube side with hydrogen diffusing from the tube to the shell side. We demonstrate that the catalyst-membrane system can achieve propane conversions >140% of the nominal equilibrium conversion with a propylene selectivity >98% without deactivation of the system components. We also show that by introducing oxygen on the shell side of the catalyst-membrane system, we can couple the endothermic PDH reaction on the tube side with exothermic hydrogen oxidation on the shell side. This coupling results in higher rates of hydrogen transport, leading to further enhancements in the propane conversion as well as desired thermoneutral system operation.

2.
J Am Chem Soc ; 146(8): 5511-5522, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38373924

ABSTRACT

Ir oxides are costly and scarce catalysts for oxygen evolution reaction (OER) in acid. There has been extensive interest in developing alternatives that are either Ir-free or require smaller amounts of Ir to drive the reactions at acceptable rates. One design strategy is to identify Ir-based mixed oxides that achieve similar performance while requiring smaller amounts of Ir. The obstacle to this strategy has been a very large phase space of the Ir-based mixed metal oxides, in terms of the metals combined with Ir and the different crystallographic structures of the mixed oxides, which prevents a thorough exploration of possible materials. In this work, we developed a workflow that uses machine-learning-aided Bayesian optimization in combination with density functional theory to make the exploration of this phase space plausible. This screening identified Mo as a promising dopant for forming acid-tolerant Ir-based oxides for the OER. We synthesized and characterized the Ir-Mo mixed oxides in the form of thin-film electrocatalysts with a known surface area. We show that these mixed oxides exhibited overpotentials ∼30 mV lower than a pure Ir control while maintaining 24% lower Ir dissolution rates than the Ir control. These findings suggest that Mo is a promising dopant and highlight the promise of machine learning to guide the experimental exploration and optimization of catalytic materials.

3.
Nat Mater ; 22(12): 1523-1530, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37828102

ABSTRACT

The advantage of a membrane/catalyst system in the oxidative coupling of methane compared with conventional reactive systems is that by introducing oxygen into the catalytic sites through a membrane, the parasitic gas-phase reactions of O2(g)-responsible for lowering product selectivity-can be avoided. The design and fabrication of membrane/catalyst systems has, however, been hampered by low volumetric chemical conversion rates, high capital cost and difficulties in co-designing membrane and catalyst properties to optimize the performance. Here we solve these issues by developing a dual-layer additive manufacturing process, based on phase inversion, to design, fabricate and optimize a hollow-fibre membrane/catalyst system for the oxidative coupling of methane. We demonstrate the approach through a case study using BaCe0.8Gd0.2O3-δ as the basis of both catalyst and separation layers. We show that by using the manufacturing approach, we can co-design the membrane thickness and catalyst surface area so that the flux of oxygen transport through the membrane and methane activation rates in the catalyst layer match each other. We demonstrate that this 'rate matching' is critical for maximizing the performance, with the membrane/catalyst system substantially overperforming conventional reactor designs under identical conditions.

4.
JACS Au ; 3(4): 997-1003, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37124298

ABSTRACT

Propylene oxide (PO) is a critical gateway chemical used in large-scale production of plastics and many other compounds. In addition, PO is also used in many smaller-scale applications that require lower PO concentrations and volumes. These include its usage as a fumigant and disinfectant for food, a sterilizer for medical equipment, as well as in producing modified food such as starch and alginate. While PO is currently mostly produced in a large-scale propylene epoxidation chemical process, due to its toxic nature and high transport and storage costs, there is a strong incentive to develop PO production strategies that are well-suited for smaller-scale on-site applications. In this contribution, we designed a plasma-liquid interaction (PLI) catalytic process that uses only water and C3H6 as reactants to form PO. We show that hydrogen peroxide (H2O2) generated in the interactions of water with plasma serves as a critical oxidizing agent that can epoxidize C3H6 over a titanium silicate-1 (TS-1) catalyst dispersed in a water solution with a carbon-based selectivity of more than 98%. As the activity of this plasma C3H6 epoxidation system is limited by the rate of H2O2 production, strategies to improve H2O2 production were also investigated.

5.
J Am Chem Soc ; 144(43): 19990-19998, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36279510

ABSTRACT

Plasmonic metal nanoparticles (e.g., Ag, Au, and Cu) constitute a class of materials that interact with light via the excitation of localized surface plasmon resonance (LSPR). Numerous studies have reported substantial enhancements in the rates of chemical reactions on illuminated plasmonic nanoparticle catalysts compared to corresponding systems in the absence of illumination. There are two mechanisms that have been proposed to explain the LSPR-induced chemical reactivity. One mechanism assumes a local plasmon-induced hot charge-carrier-mediated activation of the reactants, while the other assumes an LSPR-induced equilibrium heating of the catalyst, which leads to energy transfer to and chemical reaction of the adsorbed reactants. In this contribution, we developed a setup amenable to accurate in situ catalyst temperature and kinetic reaction rate measurements. We employed this setup to study the LSPR-induced rate enhancement in a case study of the CO oxidation reaction on plasmonic, monometallic Ag nanoparticle catalysts supported on α-Al2O3. We explored various Ag loadings and clustering levels. Our data show that the equilibrium heating of the catalyst cannot fully explain the illumination-induced plasmonic rate enhancements. This is the case even for high loading and clustering of Ag nanoparticles, where the equilibrium heating significantly increases. Based on the analysis, we propose that local effects, related to the plasmon-induced activation of adsorbates (reactants) via electronic excitation of the reactant or photothermal heating of the reactants that is highly localized to the individual nanoparticles, play a critical role in driving LSPR-induced chemical reactions.


Subject(s)
Metal Nanoparticles , Silver , Surface Plasmon Resonance , Catalysis
6.
Science ; 373(6551): 217-222, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244414

ABSTRACT

Intentional ("on-purpose") propylene production through nonoxidative propane dehydrogenation (PDH) holds great promise for meeting the increasing global demand for propylene. For stable performance, traditional alumina-supported platinum-based catalysts require excess tin and feed dilution with hydrogen; however, this reduces per-pass propylene conversion and thus lowers catalyst productivity. We report that silica-supported platinum-tin (Pt1Sn1) nanoparticles (<2 nanometers in diameter) can operate as a PDH catalyst at thermodynamically limited conversion levels, with excellent stability and selectivity to propylene (>99%). Atomic mixing of Pt and Sn in the precursor is preserved upon reduction and during catalytic operation. The benign interaction of these nanoparticles with the silicon dioxide support does not lead to Pt-Sn segregation and formation of a tin oxide phase that can occur over traditional catalyst supports.

7.
Acc Chem Res ; 54(8): 1992-2002, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33794089

ABSTRACT

ConspectusPhotoelectrochemical water splitting is a promising avenue for sustainable production of hydrogen used in the chemical industry and hydrogen fuel cells. The basic components of most photoelectrochemical water splitting systems are semiconductor light absorbers coupled to electrocatalysts, which perform the desired chemical reactions. A critical challenge for the design of these systems is the lack of stability for the majority of desired semiconductors under operating water splitting conditions. One strategy to address this issue is to protect the semiconductor by covering it with a stabilizing insulator layer, creating a metal-insulator-semiconductor (MIS) architecture, which has demonstrated improved stability. In addition to enhanced stability, the insulator layer may significantly affect the electron and hole transfer, which governs the recombination rates. Furthermore, the insertion of an insulator layer leads to the introduction of additional insulator/electrocatalyst and insulator/semiconductor interfaces. These interfaces can impact the system's performance significantly, and they need to be carefully engineered to optimize the efficiencies of MIS systems. In this Account, we describe our recent progress in shedding light on the critical role of the insulator and the interfaces on the performance of MIS systems. We discuss our findings by focusing on the concrete example of planar n-type Si protected by a HfO2 insulator layer and coupled to a Ni or Ir electrocatalyst that performs the oxygen evolution reaction, one of the water splitting half-reactions. To improve our fundamental understanding of the insulator layer, we precisely control the HfO2 insulator thickness using atomic layer deposition (ALD), and we perform a series of rigorous electrochemical experiments coupled with theory and modeling. We demonstrate that by tuning the insulator thickness, we can control the flux and recombination of photogenerated electrons and holes to optimize the generated photovoltage. Despite optimizing the thickness, we find that the maximum generated photovoltage in MIS systems is often significantly lower than the upper performance limit, i.e., there are additional losses in the system that could not be addressed by optimizing the insulator thickness. We identify the sources of these losses and describe strategies to minimize them by a combination of improving the semiconductor light absorption, removing nonidealities associated with interfacial defects, and finding alternative insulators with improved charge carrier selectivity. Finally, we quantify the improvements that can be obtained by implementing these specific strategies. Our collective work outlines strategies to analyze MIS systems, identify the sources of efficiency losses, and optimize the design to approach the fundamental performance limits. These general approaches are broadly applicable to photoelectrochemical materials that utilize sunlight to produce value-added chemicals.

8.
Nat Mater ; 20(7): 916-924, 2021 07.
Article in English | MEDLINE | ID: mdl-33398116

ABSTRACT

Strong interactions of electromagnetic fields with plasmonic nanomaterials have been exploited in various applications. These applications have centred on plasmon-enhanced scattering rates in nearby molecules or plasmon-induced heating. A question that has emerged recently is whether it is possible to use plasmonic nanostructures in a range of hot electron (hole) applications, including photocatalysis, photovoltaics and photodetection. These applications require coupling of a plasmonic component, which amplifies the interaction of light with the material, to an attached non-plasmonic component that extracts this energy in the form of electronic excitations to perform a function. In this Perspective, we discuss recent work in the emerging field of hybrid plasmonics. We focus on fundamental questions related to the nanoscopic flow of energy and excited charge carriers in these multicomponent materials. We also address critical misconceptions, challenges and opportunities that require more attention.

9.
Faraday Discuss ; 214: 441-453, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30801580

ABSTRACT

We use experimental and computational studies of core-shell metal-semiconductor and metal-molecule systems to investigate the mechanism of energy flow and energetic charge carrier generation in multicomponent plasmonic systems. We demonstrate that the rates of plasmon decay through the formation of energetic charge carriers are governed by two factors: (1) the intensity of the local plasmon induced electric fields at a specific location in the multicomponent nanostructure, and (2) the availability of direct, momentum conserved electronic excitations in the material located in that specific location. We propose a unifying physical framework that describes the flow of energy in all multicomponent plasmonic systems and leads us towards molecular control of the energy flow and excited charge carrier generation in these systems.

10.
J Am Chem Soc ; 141(1): 643-647, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30537807

ABSTRACT

Performing electron-transfer reactions on metal nanoparticles requires separation of charge carriers at the nanoparticle and their transfer to the reacting molecules. Inducing these reactions using light is challenging due to the exceedingly short lifetimes of energetic charge carriers formed in metal nanoparticles under light illumination. The results described here show that certain conditions must be met to drive these electron-transfer reactions on plasmonic nanoparticles. One critical requirement is that the process of electronic excitation takes place at the nanoparticle/molecule interface. This is accomplished by high plasmonic electric fields at the surface of plasmonic nanoparticles. Furthermore, it is also evident from our study that the electron (or hole)-donating capacity of the hole (or electron) scavengers needs to be high enough to allow for the extraction of holes (or electrons) from the nanoparticle/molecule complex, therefore completing the catalytic cycle. We discuss these findings through a case study of the conversion of methylene blue (MB) into a reduced MB ion radical on the surface of plasmonic Ag and Ag-Pt core-shell nanoparticles. To directly monitor the reduction reaction of MB on the nanoparticle surfaces, we have used time-dependent in situ surface-enhanced Raman scattering measurement, which also informs us about the underlying mechanistic details of plasmon-driven charge transfer.

11.
ACS Appl Mater Interfaces ; 9(49): 43127-43132, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29165979

ABSTRACT

Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.

12.
Nat Nanotechnol ; 12(10): 1000-1005, 2017 10.
Article in English | MEDLINE | ID: mdl-28737751

ABSTRACT

It has been shown that photoexcitation of plasmonic metal nanoparticles (Ag, Au and Cu) can induce direct photochemical reactions. However, the widespread application of this technology in catalysis has been limited by the relatively poor chemical reactivity of noble metal surfaces. Despite efforts to combine plasmonic and catalytic metals, the physical mechanisms that govern energy transfer from plasmonic metals to catalytic metals remain unclear. Here we show that hybrid core-shell nanostructures in which a core plasmonic metal harvests visible-light photons can selectively channel that energy into catalytically active centres on the nanostructure shell. To accomplish this, we developed a synthetic protocol to deposit a few monolayers of Pt onto Ag nanocubes. This model system allows us to conclusively separate the optical and catalytic functions of the hybrid nanomaterial and determine that the flow of energy is strongly biased towards the excitation of energetic charge carriers in the Pt shell. We demonstrate the utility of these nanostructures for photocatalytic chemical reactions in the preferential oxidation of CO in excess H2. Our data demonstrate that the reaction occurs exclusively on the Pt surface.

13.
ACS Nano ; 10(6): 6108-15, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27268233

ABSTRACT

Plasmonic metal nanoparticles can efficiently convert the energy of visible photons into the energy of hot charge carriers within the nanoparticles. These energetic charge carriers can transfer to molecules or semiconductors, chemically attached to the nanoparticles, where they can induce photochemical transformations. Classical models of photoinduced charge excitation and transfer in metals suggest that the majority of the energetic charge carriers rapidly decay within the metal nanostructure before they are transferred into the neighboring molecule or semiconductor, and therefore, the efficiency of charge transfer is low. Herein, we present experimental evidence that calls into question this conventional picture. We demonstrate a system where the presence of a molecule, adsorbed on the surface of a plasmonic nanoparticle, significantly changes the flow of charge within the excited plasmonic system. The nanoparticle-adsorbate system experiences high rates of direct, resonant flow of charge from the nanoparticle to the molecule, bypassing the conventional charge excitation and thermalization process taking place in the nanoparticle. This picture of charge transfer suggests that the yield of extracted hot electrons (or holes) from plasmonic nanoparticles can be significantly higher than the yields expected based on conventional models. We discuss a conceptual physical framework that allows us to explain our experimental observations. This analysis points us in a direction toward molecular control of the charge transfer process using interface and local field engineering strategies.

14.
J Chem Phys ; 144(23): 234704, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27334187

ABSTRACT

Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

15.
Nat Commun ; 7: 10545, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26817619

ABSTRACT

Plasmonic metal nanoparticles enhance chemical reactions on their surface when illuminated with light of particular frequencies. It has been shown that these processes are driven by excitation of localized surface plasmon resonance (LSPR). The interaction of LSPR with adsorbate orbitals can lead to the injection of energized charge carriers into the adsorbate, which can result in chemical transformations. The mechanism of the charge injection process (and role of LSPR) is not well understood. Here we shed light on the specifics of this mechanism by coupling optical characterization methods, mainly wavelength-dependent Stokes and anti-Stokes SERS, with kinetic analysis of photocatalytic reactions in an Ag nanocube-methylene blue plasmonic system. We propose that localized LSPR-induced electric fields result in a direct charge transfer within the molecule-adsorbate system. These observations provide a foundation for the development of plasmonic catalysts that can selectively activate targeted chemical bonds, since the mechanism allows for tuning plasmonic nanomaterials in such a way that illumination can selectively enhance desired chemical pathways.

17.
Nat Mater ; 14(6): 567-76, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25990912

ABSTRACT

The strong interaction of electromagnetic fields with plasmonic nanomaterials offers opportunities in various technologies that take advantage of photophysical processes amplified by this light-matter interaction. Recently, it has been shown that in addition to photophysical processes, optically excited plasmonic nanoparticles can also activate chemical transformations directly on their surfaces. This potentially offers a number of opportunities in the field of selective chemical synthesis. In this Review we summarize recent progress in the field of photochemical catalysis on plasmonic metallic nanostructures. We discuss the underlying physical mechanisms responsible for the observed chemical activity, and the issues that must be better understood to see progress in the field of plasmon-mediated photocatalysis.

18.
Nat Chem ; 6(9): 828-34, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25143220

ABSTRACT

The electrochemical oxygen reduction reaction is the limiting half-reaction for low-temperature hydrogen fuel cells, and currently costly Pt-based electrocatalysts are used to generate adequate rates. Although most other metals are not stable in typical acid-mediated cells, alkaline environments permit the use of less costly electrodes, such as silver. Unfortunately, monometallic silver is not sufficiently active for economical fuel cells. Herein we demonstrate the design of low-cost Ag-Co surface alloy nanoparticle electrocatalysts for oxygen reduction. Their performance relative to that of Pt is potential dependent, but reaches over half the area-specific activity of Pt nanoparticle catalysts and is more than a fivefold improvement over pure silver nanoparticles at typical operating potentials. The Ag-Co electrocatalyst was initially identified with quantum chemical calculations and then synthesized using a novel technique that generates a surface alloy, despite bulk immiscibility of the constituent materials. Characterization studies support the hypothesis that the activity improvement comes from a ligand effect, in which cobalt atoms perturb surface silver sites.

19.
Acc Chem Res ; 46(8): 1890-9, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23750539

ABSTRACT

Heterogeneous catalysis by metals was among the first enabling technologies that extensively relied on nanoscience. The early intersections of catalysis and nanoscience focused on the synthesis of catalytic materials with high surface to volume ratio. These synthesis strategies mainly involved the impregnation of metal salts on high surface area supports. This would usually yield quasi-spherical nanoparticles capped by low-energy surface facets, typically with closely packed metal atoms. These high density areas often function as the catalytically active surface sites. Unfortunately, strategies to control the functioning surface facet (i.e., the geometry of active sites that performs catalytic turnover) are rare and represent a significant challenge in our ability to fine-tune and optimize the reactive surfaces. Through recent developments in colloidal chemistry, chemists have been able to synthesize metallic nanoparticles of both targeted size and desired shape. This has opened new possibilities for the design of heterogeneous catalytic materials, since metal nanoparticles of different shapes are terminated with different surface facets. By controlling the surface facet exposed to reactants, we can start affecting the chemical transformations taking place on the metal particles and changing the outcome of catalytic processes. Controlling the size and shape of metal nanoparticles also allows us to control the optical properties of these materials. For example, noble metals nanoparticles (Au, Ag, Cu) interact with UV-vis light through an excitation of localized surface plasmon resonance (LSPR), which is highly sensitive to the size and shape of the nanostructures. This excitation is accompanied by the creation of short-lived energetic electrons on the surface of the nanostructure. We showed recently that these energetic electrons could drive photocatalytic transformations on these nanostructures. The photocatalytic, electron-driven processes on metal nanoparticles represent a new family of chemical transformations exhibiting fundamentally different behavior compared with phonon-driven thermal processes, potentially allowing selective bond activation. In this Account, we discuss both the impact of the shape of metal nanoparticles on the outcome of heterogeneous catalytic reactions and the direct, electron-driven photocatalysis on plasmonic metal nanostructures of noble metals. These two phenomena are important examples of taking advantage of physical properties of metal materials that are controlled at nanoscales to affect chemical transformations.


Subject(s)
Metal Nanoparticles/chemistry , Metals, Heavy/chemistry , Catalysis , Particle Size , Photochemical Processes , Surface Properties
20.
Science ; 339(6127): 1590-3, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23539599

ABSTRACT

Oxidation of functioning copper has restricted its applicability as a catalyst for commercially important epoxidation of propylene to form propylene oxide. Here, we report that steady-state selectivity in propylene epoxidation on copper (Cu) nanoparticles increases sharply when the catalyst is illuminated with visible light. The selectivity increase is accompanied by light-induced reduction of the surface Cu atoms, which is brought about by photoexcitation of the localized surface plasmon resonance (LSPR) of Cu. We discuss multiple mechanisms by which Cu LSPR weakens the Cu-O bonds, reducing Cu2O.

SELECTION OF CITATIONS
SEARCH DETAIL
...