Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Braz J Biol ; 83: e272252, 2023.
Article in English | MEDLINE | ID: mdl-37672434

ABSTRACT

Cerambycidae beetles limit production and establishment of forest and fruit trees. Oncideres cervina Thomson, 1868 (Coleoptera: Cerambycidae) is one of the most important species. The objective was to record O. cervina girdling branches of Persea americana Mill. (Lauraceae) for the first time, check the number of oviposition incisions (Noi) as a function of the diameter of branch sections, period of emergence, and describe the larval-pupal chamber. Individuals of O. cervina were observed, for the first time, in P. americana orchards in Santa Maria, Rio Grande do Sul, Brazil. The middle section of branches (40-60 cm interval) had higher number of incisions. Girdled branches with a diameter of 40-50 mm had higher number of them. Adults emerged from November through January. Larval-pupal boreholes had diameters between 9 and 11 mm, and average tunnel length was 28 mm, with a mean volume of consumed wood of 4.3 mL. This information is useful for establishing integrated pest management practices against O. cervina in P. americana since this crop has a high added value and can be significantly compromised by attack by Cerambycidae beetles.


Subject(s)
Coleoptera , Lauraceae , Persea , Female , Animals , Larva , Brazil , Pupa
3.
Leukemia ; 31(4): 872-881, 2017 04.
Article in English | MEDLINE | ID: mdl-27740633

ABSTRACT

Traditional response criteria in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are based on bone marrow morphology and may not accurately reflect clonal tumor burden in patients treated with non-cytotoxic chemotherapy. We used next-generation sequencing of serial bone marrow samples to monitor MDS and AML tumor burden during treatment with epigenetic therapy (decitabine and panobinostat). Serial bone marrow samples (and skin as a source of normal DNA) from 25 MDS and AML patients were sequenced (exome or 285 gene panel). We observed that responders, including those in complete remission (CR), can have persistent measurable tumor burden (that is, mutations) for at least 1 year without disease progression. Using an ultrasensitive sequencing approach, we detected extremely rare mutations (equivalent to 1 heterozygous mutant cell in 2000 non-mutant cells) months to years before their expansion at disease relapse. While patients can live with persistent clonal hematopoiesis in a CR or stable disease, ultimately we find evidence that expansion of a rare subclone occurs at relapse or progression. Here we demonstrate that sequencing of serial samples provides an alternative measure of tumor burden in MDS or AML patients and augments traditional response criteria that rely on bone marrow blast percentage.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clonal Evolution/genetics , Epigenesis, Genetic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Aged , Aged, 80 and over , Bone Marrow/pathology , Exome , Female , Genes, p53 , High-Throughput Nucleotide Sequencing , Histone Deacetylase Inhibitors/administration & dosage , Humans , Leukemia, Myeloid, Acute/diagnosis , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/diagnosis , Polymorphism, Single Nucleotide , Remission Induction , Treatment Outcome , Tumor Burden
7.
Leukemia ; 28(9): 1851-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24518205

ABSTRACT

Recent studies demonstrate that inflammatory signals regulate hematopoietic stem cells (HSCs). Granulocyte colony-stimulating factor (G-CSF) is often induced with infection and has a key role in the stress granulopoiesis response. However, its effects on HSCs are less clear. Herein, we show that treatment with G-CSF induces expansion and increased quiescence of phenotypic HSCs, but causes a marked, cell-autonomous HSC repopulating defect associated with induction of Toll-like receptor (TLR) expression and signaling. The G-CSF-mediated expansion of HSCs is reduced in mice lacking TLR2, TLR4 or the TLR signaling adaptor MyD88. Induction of HSC quiescence is abrogated in mice lacking MyD88 or in mice treated with antibiotics to suppress intestinal flora. Finally, loss of TLR4 or germ-free conditions mitigates the G-CSF-mediated HSC repopulating defect. These data suggest that low-level TLR agonist production by commensal flora contributes to the regulation of HSC function and that G-CSF negatively regulates HSCs, in part, by enhancing TLR signaling.


Subject(s)
Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/drug effects , Signal Transduction/physiology , Toll-Like Receptors/physiology , Animals , Hematopoietic Stem Cells/physiology , Intestines/microbiology , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/physiology , Receptors, Granulocyte Colony-Stimulating Factor/physiology , Signal Transduction/drug effects , fms-Like Tyrosine Kinase 3/physiology
8.
Leukemia ; 27(6): 1275-82, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23443460

ABSTRACT

Recent studies suggest that most cases of myelodysplastic syndrome (MDS) are clonally heterogeneous, with a founding clone and multiple subclones. It is not known whether specific gene mutations typically occur in founding clones or subclones. We screened a panel of 94 candidate genes in a cohort of 157 patients with MDS or secondary acute myeloid leukemia (sAML). This included 150 cases with samples obtained at MDS diagnosis and 15 cases with samples obtained at sAML transformation (8 were also analyzed at the MDS stage). We performed whole-genome sequencing (WGS) to define the clonal architecture in eight sAML genomes and identified the range of variant allele frequencies (VAFs) for founding clone mutations. At least one mutation or cytogenetic abnormality was detected in 83% of the 150 MDS patients and 17 genes were significantly mutated (false discovery rate ≤0.05). Individual genes and patient samples displayed a wide range of VAFs for recurrently mutated genes, indicating that no single gene is exclusively mutated in the founding clone. The VAFs of recurrently mutated genes did not fully recapitulate the clonal architecture defined by WGS, suggesting that comprehensive sequencing may be required to accurately assess the clonal status of recurrently mutated genes in MDS.


Subject(s)
Mutation , Myelodysplastic Syndromes/genetics , Female , Gene Frequency , Humans , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Recurrence
9.
Int J Obes (Lond) ; 35(2): 208-16, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20548299

ABSTRACT

OBJECTIVE: The member of the tumor necrosis factor family LIGHT (lymphotoxin-like inducible protein that competes with glycoprotein D for herpesvirus entry on T cells; TNFSF14 (tumor necrosis factor super family protein 14) is primarily expressed in lymphocytes, in which it induces the expression of pro-inflammatory cytokines and alterations of lipid homeostasis. Recently, the protein was shown to be upregulated in obesity and to induce cytokine secretion from adipocytes. RESEARCH METHODS AND PROCEDURES: Using an automated complementary DNA (cDNA) screen, LIGHT was identified to inhibit adipose differentiation. As cellular models for adipogenesis mouse 3T3-L1, human SGBS (Simpson-Golabi-Behmel syndrome) and primary human preadipocytes differentiated in vitro were used as well as primary human adipocytes to study adipocyte functions. Analysis of lipid deposition by Oil Red O staining, mRNA expression by quantitative reverse transcriptase-PCR, nuclear factor (NF)-κB activation as well as protein secretion by enzyme linked immunosorbent assay and Luminex technology was performed. RESULTS: LIGHT was found to inhibit lipid accumulation in the three models of preadipocytes in a dose-dependent manner without cytotoxic effects. This inhibition of differentiation was probably because of interference at early steps of adipogenesis, as early exposure during differentiation showed the strongest effect, as assessed by decreased peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα) mRNA expression. In contrast to TNFα, basal and insulin-stimulated glucose uptake and lipolysis of terminally differentiated mature adipocytes were not altered in the presence of LIGHT. At a concentration sufficient to inhibit differentiation, secretion of proinflammatory cytokines was not significantly induced and NF-κB activity was only modestly induced compared with TNFα. CONCLUSION: LIGHT is a novel inhibitor of human adipocyte differentiation without adversely influencing central metabolic pathways in adipocytes.


Subject(s)
Adipocytes/drug effects , Glucose/metabolism , Obesity/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism , Adipocytes/metabolism , Adipogenesis/drug effects , Animals , Cell Differentiation/drug effects , Cytokines/metabolism , Humans , Interleukin-6/metabolism , Lipid Metabolism/drug effects , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Obesity/genetics , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
10.
Leukemia ; 25(2): 211-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21079612

ABSTRACT

Under normal conditions, the great majority of hematopoietic stem/progenitors cells (HSPCs) reside in the bone marrow. The number of HSPCs in the circulation can be markedly increased in response to a number of stimuli, including hematopoietic growth factors, myeloablative agents and environmental stresses such as infection. The ability to 'mobilize' HSPCs from the bone marrow to the blood has been exploited clinically to obtain HSPCs for stem cell transplantation and, more recently, to stimulate therapeutic angiogenesis at sites of tissue ischemia. Moreover, there is recent interest in the use of mobilizing agents to sensitize leukemia and other hematopoietic malignancies to cytotoxic agents. Key to optimizing clinical mobilizing regimens is an understanding of the fundamental mechanisms of HSPC mobilization. In this review, we discuss recent advances in our understanding of the mechanisms by which granulocyte colony-stimulating factor (G-CSF), the prototypical mobilizing agent, induces HSPC mobilization.


Subject(s)
Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Mobilization/methods , Hematologic Neoplasms/therapy , Humans
11.
Science ; 325(5939): 456-60, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19628864

ABSTRACT

In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral--a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry--the appearance of macroscopic coherence of the filament twist--produces a liquid crystal phase of helically precessing layers.


Subject(s)
Molecular Structure , Nanostructures , Crystallization , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Microscopy, Polarization , X-Ray Diffraction
12.
Phys Rev Lett ; 99(15): 157801, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17995213

ABSTRACT

We use double-emulsion drops to experimentally investigate the defect structures of spherical shells of nematic liquid crystals. We uncover a rich scenario of coexisting defect structures dictated by the unavoidable finite thickness of even the thinnest shell and by the thickness variation around the sphere. These structures are characterized by a varying number of disclination lines and pairs of surface point defects on the inner and outer surfaces of the nematic shell. In the limit of very thick shells the defect structure ultimately merges with that of a bulk nematic liquid crystal drop.

13.
Phys Rev Lett ; 98(8): 087801, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17359128

ABSTRACT

Bipolar liquid crystal drops moving inside microchannels exhibit periodic director field transformations due to induced circulating flows inside them. These modifications are characterized by changes in the type of point surface disclinations; they periodically change from splay to bend disclinations, implying the drop changes between bipolar and escaped concentric configurations. Upon stopping the flow, this structure does not relax to the lower energy bipolar configuration; we argue this is due to drop flattening inside the channels.

14.
Science ; 308(5721): 537-41, 2005 Apr 22.
Article in English | MEDLINE | ID: mdl-15845850

ABSTRACT

Double emulsions are highly structured fluids consisting of emulsion drops that contain smaller droplets inside. Although double emulsions are potentially of commercial value, traditional fabrication by means of two emulsification steps leads to very ill-controlled structuring. Using a microcapillary device, we fabricated double emulsions that contained a single internal droplet in a core-shell geometry. We show that the droplet size can be quantitatively predicted from the flow profiles of the fluids. The double emulsions were used to generate encapsulation structures by manipulating the properties of the fluid that makes up the shell. The high degree of control afforded by this method and the completely separate fluid streams make this a flexible and promising technique.

15.
Phys Rev Lett ; 92(10): 105503, 2004 Mar 12.
Article in English | MEDLINE | ID: mdl-15089213

ABSTRACT

We directly visualize the response and relaxation dynamics of bipolar nematic liquid crystal droplets to an applied electric field E. Despite strong planar anchoring, there is no critical field for switching. Instead, upon application of E, the surface region first reorients, followed by movement of the disclinations and the bipolar axis. After removing E, elastic forces restore the drop to its original state. The collective electro-optic properties of ordered hexagonal-close-packed monolayers of drops are probed by diffraction experiments confirming the proposed switching mechanism.

16.
Phys Rev Lett ; 92(5): 054503, 2004 Feb 06.
Article in English | MEDLINE | ID: mdl-14995311

ABSTRACT

Microfluidic technology offers capabilities for the precise handling of small fluid volumes dispersed as droplets. To fully exploit this potential requires simultaneous generation of multiple size droplets. We demonstrate two methods for passively breaking larger drops into precisely controlled daughter drops using pressure-driven flow in simple microfluidic configurations: (i) a T junction and (ii) flow past isolated obstacles. We quantify conditions for breakup at a T junction and illustrate sequential breakup at T junctions for making small drops at high dispersed phase volume fractions.

17.
Science ; 301(5637): 1204-11, 2003 Aug 29.
Article in English | MEDLINE | ID: mdl-12947191

ABSTRACT

Any polar-ordered material with a spatially uniform polarization field is internally frustrated: The symmetry-required local preference for polarization is to be nonuniform, i.e., to be locally bouquet-like or "splayed." However, it is impossible to achieve splay of a preferred sign everywhere in space unless appropriate defects are introduced into the field. Typically, in materials like ferroelectric crystals or liquid crystals, such defects are not thermally stable, so that the local preference is globally frustrated and the polarization field remains uniform. Here, we report a class of fluid polar smectic liquid crystals in which local splay prevails in the form of periodic supermolecular-scale polarization modulation stripes coupled to layer undulation waves. The polar domains are locally chiral, and organized into patterns of alternating handedness and polarity. The fluid-layer undulations enable an extraordinary menagerie of filament and planar structures that identify such phases.

18.
Anal Bioanal Chem ; 375(3): 428-36, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12589509

ABSTRACT

In order to characterize the mercury hazard in soil, a sequential extraction scheme has been developed to classify mercury species based on their environmental mobility and/or toxicity for either routine lab analysis or on-site screening purposes. The alkyl mercury species and soluble inorganic species that contribute to the major portion of potential mercury toxicity in the soil are extracted by an acidic ethanol solution (2% HCl+10% ethanol solution) from soil matrices as "mobile and toxic" species. A High-Performance Liquid Chromatography (HPLC) system coupled with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) detection has been developed to further resolve the species information into soluble inorganic species (Hg(2+)), methylmercury(II) (MeHg(+)) and ethylmercury(II) (EtHg(+)) species. Alternatively, these species can be separated into "soluble inorganic mercury" and "alkyl mercury" sub-categories by Solid-Phase Extraction (SPE). A custom Sulfydryl Cotton Fiber (SCF) material is used as the solid phase medium. Optimization of the SCF SPE technique is discussed. Combined with a direct mercury analyzer (DMA-80), the SCF SPE technique is a promising candidate for on-site screening purposes. Following the ethanol extraction, the inorganic mercury species remaining in soil are further divided into "semi-mobile" and "non-mobile" sub-categories by sequential acid extractions. The "semi-mobile" mercury species include mainly elemental mercury (Hg) and mercury-metal amalgams. The non-mobile mercury species mainly include mercuric sulfide (HgS) and mercurous chloride (Hg(2)Cl(2)).


Subject(s)
Mercury/chemistry , Mercury/isolation & purification , Soil/analysis , Chemical Fractionation/methods , Chromatography, High Pressure Liquid , Geologic Sediments/analysis , Hydrochloric Acid , Mercury/analysis , Nitric Acid , Soil Pollutants/analysis , Soil Pollutants/isolation & purification , Solvents
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 1): 040701, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12443166

ABSTRACT

We present ellipsometric results from thin free-standing films of one chiral liquid crystal compound. In the bulk SmA range with surface-induced molecular tilt, a nonplanar arrangement of the molecular orientations of the tilted surface layers is found under a small applied electric field.

20.
Phys Rev Lett ; 87(19): 195507, 2001 Nov 05.
Article in English | MEDLINE | ID: mdl-11690425

ABSTRACT

Spontaneous pattern formation in hybrid nematic liquid-crystal films on glycerol was studied with both polarized transmission and unpolarized monochromatic reflected light microscopy. These observations reveal that the patterns that are found in 1 to 10-microm-thick films are due to a combination of film topography, gradients in film thickness that act as an aligning field, and topology, connectivity requirements on the vector field. The patterns studied include cellular patterns, disclinations connected by 2pi-walls, and 2pi-walls that narrow to a point at the edge of the films.

SELECTION OF CITATIONS
SEARCH DETAIL
...