Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Magn Reson ; 353: 107497, 2023 08.
Article in English | MEDLINE | ID: mdl-37295281

ABSTRACT

Hyperpolarization via the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect can be detected in frozen solutions of electron transfer proteins generating a radical-pair upon illumination. The effect has been observed in various natural photosynthetic reaction centers and in light-oxygen-voltage (LOV) sensing domains incorporating a flavin mononucleotide (FMN) as chromophore. In LOV domains, where a highly conserved cysteine is mutated to a flavin to interrupt its natural photochemistry, a radical-pair is generated by electron transfer from a nearby tryptophan to the photoexcited triplet state of FMN. During the photocycle, both the LOV domain and the chromophore are photochemically degraded, e.g., by the formation of singlet oxygen. This limits the time for collection of hyperpolarized nuclear magnetic resonance (NMR) data. We show that embedding of the protein into a trehalose sugar glass matrix stabilizes the protein for 13C solid-state photo-CIDNP NMR experiments which can be conducted at room temperature in a powder sample. Additionally, this preparation allows for incorporation of high amounts of protein further boosting the intensity of the detected signals from FMN and tryptophan at natural abundance. Signal assignment is aided by quantum chemical calculations of absolute shieldings. The underlying mechanism for the surprising absorption-only signal pattern is not yet understood. Comparison to calculated isotropic hyperfine couplings imply that the enhancement is not due to the classical radical-pair mechanism (RPM). Analysis of the anisotropic hyperfine couplings associated with solid-state photo-CIDNP mechanisms also show no simple correlation, suggesting a more complex underlying mechanism.


Subject(s)
Flavoproteins , Sugars , Temperature , Tryptophan , Magnetic Resonance Spectroscopy
2.
Methods Mol Biol ; 2317: 49-76, 2021.
Article in English | MEDLINE | ID: mdl-34028762

ABSTRACT

Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.


Subject(s)
DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plastids/genetics , Promoter Regions, Genetic , Transcription, Genetic , DNA-Binding Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Plant Proteins/genetics , Plastids/metabolism
3.
J Phys Chem Lett ; 12(14): 3647-3654, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33826347

ABSTRACT

Quantum entanglement has been realized on a variety of physical platforms such as quantum dots, trapped atomic ions, and superconductors. Here we introduce specific molecular solids as promising alternative platforms. Our model system is triplet pentacene in a host single crystal at level anticrossing (LAC) conditions. First, a laser pulse generates the triplet state and initiates entanglement between an electron spin and 14 hyperfine coupled proton spins (quantum bits or qubits). This gives rise to large nuclear spin polarization. Subsequently, a resonant high-power microwave (mw) pulse disentangles the electron spin from the nuclear spins. Simultaneously, high-dimensional multiqubit entanglement is formed among the proton spins. We verified the initialization of 214 pure 14-qubit entangled nuclear spin states with an average degree of entanglement of Eav = 0.77 ± 0.03. These results pave the way for large-scale quantum information processing with more than 10 000 multiqubit entangled states corresponding to computational (Hilbert) space dimensions of dim >1053.

4.
Front Plant Sci ; 5: 667, 2014.
Article in English | MEDLINE | ID: mdl-25505479

ABSTRACT

Plants contain a nuclear gene family for plastid sigma factors, i.e., proteins that associate with the "bacterial-type" organellar RNA polymerase and confer the ability for correct promoter binding and transcription initiation. Questions that are still unresolved relate to the "division of labor" among members of the sigma family, both in terms of their range of target genes and their temporal and spatial activity during development. Clues to the in vivo role of individual sigma genes have mainly come from studies of sigma knockout lines. Despite its obvious strengths, however, this strategy does not necessarily trace-down causal relationships between mutant phenotype and a single sigma gene, if other family members act in a redundant and/or compensatory manner. We made efforts to reduce the complexity by genetic crosses of Arabidopsis single mutants (with focus on a chlorophyll-deficient sig6 line) to generate double knockout lines. The latter typically had a similar visible phenotype as the parental lines, but tended to be more strongly affected in the transcript patterns of both plastid and sigma genes. Because triple mutants were lethal under our growth conditions, we exploited a strategy of transformation of single and double mutants with RNAi constructs that contained sequences from the unconserved sigma region (UCR). These RNAi/knockout lines phenotypically resembled their parental lines, but were even more strongly affected in their plastid transcript patterns. Expression patterns of sigma genes revealed both similarities and differences compared to the parental lines, with transcripts at reduced or unchanged amounts and others that were found to be present in higher (perhaps compensatory) amounts. Together, our results reveal considerable flexibility of gene activity at the levels of both sigma and plastid gene expression. A (still viable) "basal state" seems to be reached, if 2-3 of the 6 Arabidopsis sigma genes are functionally compromised.

5.
J Phys Chem B ; 118(40): 11622-32, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25207844

ABSTRACT

Phototropin is a flavin mononucleotide (FMN) containing blue-light receptor, which regulates, governed by its two LOV domains, the phototropic response of higher plants. Upon photoexcitation, the FMN cofactor triplet state, (3)F, reacts with a nearby cysteine to form a covalent adduct. Cysteine-to-alanine mutants of LOV domains instead generate a flavin radical upon illumination. Here, we explore the formation of photochemically induced dynamic nuclear polarization (CIDNP) in LOV2-C450A of Avena sativa phototropin and demonstrate that photo-CIDNP observed in solution (13)C NMR spectra can reliably be interpreted in terms of solid-state mechanisms including a novel triplet mechanism. To minimize cross-polarization, which transfers light-induced magnetization to adjacent (13)C nuclei, our experiments were performed on proteins reconstituted with specifically (13)C-labeled flavins. Two potential sources for photo-CIDNP can be identified: The photogenerated triplet state, (3)F, and the triplet radical pair (3)(F(-•)W(+•)), formed by electron abstraction of (3)F from tryptophan W491. To separate the two contributions, photo-CIDNP studies were performed at four different magnetic fields ranging from 4.7 to 11.8 T. Analysis revealed that, at fields <9 T, both (3)(F(-•)W(+•)) and (3)F contribute to photo-CIDNP, whereas at high magnetic fields, the calculated enhancement factors of (3)F agree favorably with their experimental counterparts. Thus, we have for the first time detected that a triplet state is the major source for photo-CIDNP in a photoactive protein. Since triplet states are frequently encountered upon photoexcitation of flavoproteins, the novel triplet mechanism opens up new means of studying electronic structures of the active cofactors in these proteins at atomic resolution.


Subject(s)
Avena/chemistry , Phototropins/chemistry , Flavin Mononucleotide/chemistry , Light , Nuclear Magnetic Resonance, Biomolecular , Photochemical Processes , Protein Structure, Tertiary
6.
Methods Mol Biol ; 1132: 47-72, 2014.
Article in English | MEDLINE | ID: mdl-24599846

ABSTRACT

Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.


Subject(s)
Chloroplasts/genetics , Gene Expression Regulation, Plant/genetics , Promoter Regions, Genetic , Transcription, Genetic , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplast Proteins/genetics , DNA, Plant , DNA-Binding Proteins , DNA-Directed RNA Polymerases/genetics , Escherichia coli Proteins/genetics , Genome, Chloroplast , Mitochondrial Proteins/genetics , Sigma Factor/genetics , Nicotiana/genetics
7.
J Am Chem Soc ; 134(12): 5563-76, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22352450

ABSTRACT

Crystallographic models of photosystem I (PS I) highlight a symmetrical arrangement of the electron transfer cofactors which are organized in two parallel branches (A, B) relative to a pseudo-C2 symmetry axis that is perpendicular to the membrane plane. Here, we explore the electron transfer pathways of PS I in whole cells of the deuterated green alga Chlamydomonas reinhardtii using high-time-resolution electron paramagnetic resonance (EPR) at cryogenic temperatures. Particular emphasis is given to quantum oscillations detectable in the tertiary radical pairs P700(+)A1A(-) and P700(+)A1B(-) of the electron transfer chain. Results are presented first for the deuterated site-directed mutant PsaA-M684H in which electron transfer beyond the primary electron acceptor A0A on the PsaA branch of electron transfer is impaired. Analysis of the quantum oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the geometry of the B-side radical pair. The orientation of the g tensor of P700(+) in an external reference system is adapted from a time-resolved multifrequency EPR study of deuterated and 15N-substituted cyanobacteria (Link, G.; Berthold, T.; Bechtold, M.; Weidner, J.-U.; Ohmes, E.; Tang, J.; Poluektov, O.; Utschig, L.; Schlesselman, S. L.; Thurnauer, M. C.; Kothe, G. J. Am. Chem. Soc. 2001, 123, 4211-4222). Thus, we obtain the three-dimensional structure of the B-side radical pair following photoexcitation of PS I in its native membrane. The new structure describes the position and orientation of the reduced B-side quinone A1B(-) on a nanosecond time scale after light-induced charge separation. Furthermore, we present results for deuterated wild-type cells of C. reinhardtii demonstrating that both radical pairs P700(+)A1A(-) and P700(+)A1B(-) participate in the electron transfer process according to a mole ratio of 0.71/0.29 in favor of P700(+)A1A(-). A detailed comparison reveals different orientations of A1A(-) and A1B(-) in their respective binding sites such that formation of a strong hydrogen bond from A1(-) to the protein backbone is possible only in the case of A1A(-). We suggest that this is relevant to the rates of forward electron transfer from A1A(-) or A1B(-) to the iron-sulfur center F(X), which differ by a factor of 10. Thus, the present study sheds new light on the orientation of the phylloquinone acceptors in their binding pockets in PS I and the effect this has on function.


Subject(s)
Chlamydomonas reinhardtii/chemistry , Electron Spin Resonance Spectroscopy , Photosystem I Protein Complex/chemistry , Plant Proteins/chemistry , Chlamydomonas reinhardtii/cytology , Cold Temperature , Deuterium/chemistry , Electron Transport , Models, Molecular
8.
FEBS J ; 279(3): 395-409, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22111690

ABSTRACT

A plastidic serine/threonine protein kinase, initially named plastid transcription kinase (PTK) has been implicated in phosphorylation and redox control of chloroplast transcription. This kinase was later renamed as chloroplast casein kinase 2 (cpCK2) because of its physical and functional similarity to nucleocytosolic casein kinase 2 (ncCK2). It shares all four of its cysteine residues with ncCK2 from land plants, while only three of these residues are conserved in algal CK2-type sequences, and just two in animals. Using bacterial overexpression of cpCK2 from Arabidopsis thaliana, here we show the principal features of this enzyme and assign functional determinants of its role as a transcriptional regulator in vitro. The recombinant protein is capable of using various plant sigma transcription factors as phosphorylation substrates. Electrophoretic mobility shift DNA-binding assays reveal differential effects of sigma phosphorylation, depending on the factor and the promoter used. Treatment of the kinase with redox-active reagents indicate a critical involvement of thiol groups in both its enzymatic activity and interaction capabilities. Mutational exchanges of cysteine to serine residues, in combination with in vitro assays, have provided clues to the possible role of individual cysteines. For instance, while Cys4 but not Cys2 is essential for activity, the latter seems to be involved in the formation of intermolecular (regulatory) disulfide bonds.


Subject(s)
Arabidopsis/enzymology , Casein Kinase II/genetics , Casein Kinase II/physiology , Phylogeny , Plastids/enzymology , Sigma Factor/metabolism , Transcription Factors , Amino Acid Substitution , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cysteine/metabolism , Phosphorylation , Plastids/metabolism , Transcription, Genetic
9.
Eur J Cell Biol ; 89(12): 940-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20701995

ABSTRACT

Chloroplasts and other plastids within plant cells together are responsible for autotrophic growth and biosynthesis of metabolic key components. Genetically, the plastids are hybrid organelles composed of proteins that are either products of their own organellar genes or are nucleus-encoded and imported from the cytosol. This dual genetic principle is evident in the case of the multi-subunit RNA polymerase, i.e. a major enzyme of the plastid transcription apparatus, consisting of an organelle-encoded core surrounded by imported regulatory proteins. Representatives of the latter are the members of the plastid sigma factor family as well as a Ser/Thr-protein kinase (PTK/cpCK2) that functionally modifies these factors and controls transcription. The plant sigma factors contain regulatory phosphoacceptor sites within their unconserved (factor-specific) portion that precedes the conserved catalytic region. Phosphorylation state changes of these regulatory sites help establish the activity and promoter selectivity of individual members of this plant transcription factor family. The protein kinase itself responds to SH-group regulation by glutathione and transmits the redox signal via its phosphorylation activity to the plastid transcription apparatus. Other functional interactors include a set of sigma binding proteins that confer enhanced promoter binding in vitro and are thought to be involved in pathogenic stress responses of the chloroplast in vivo.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplasts/genetics , Plastids/metabolism , Sigma Factor/metabolism , Transcription, Genetic/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Models, Biological , Plastids/genetics , Sigma Factor/genetics
10.
J Phys Chem B ; 114(45): 14745-54, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-20684534

ABSTRACT

Blue-light excitation of cryptochromes and homologues uniformly triggers electron transfer (ET) from the protein surface to the flavin adenine dinucleotide (FAD) cofactor. A cascade of three conserved tryptophan residues has been considered to be critically involved in this photoreaction. If the FAD is initially in its fully oxidized (diamagnetic) redox state, light-induced ET via the tryptophan triad generates a series of short-lived spin-correlated radical pairs comprising an FAD radical and a tryptophan radical. Coupled doublet-pair species of this type have been proposed as the basis, for example, of a biological magnetic compass in migratory birds, and were found critical for some cryptochrome functions in vivo. In this contribution, a cryptochrome-like protein (CRYD) derived from Xenopus laevis has been examined as a representative system. The terminal radical-pair state FAD(•)···W324(•) of X. laevis CRYD has been characterized in detail by time-resolved electron-paramagnetic resonance (TREPR) at X-band microwave frequency (9.68 GHz) and magnetic fields around 345 mT, and at Q-band (34.08 GHz) at around 1215 mT. Different precursor states, singlet versus triplet, of radical-pair formation have been considered in spectral simulations of the experimental electron-spin polarized TREPR signals. Conclusively, we present evidence for a singlet-state precursor of FAD(•)···W324(•) radical-pair generation because at both magnetic fields, where radical pairs were studied by TREPR, net-zero electron-spin polarization has been detected. Neither a spin-polarized triplet precursor nor a triplet at thermal equilibrium can explain such an electron-spin polarization. It turns out that a two-microwave-frequency TREPR approach is essential to draw conclusions on the nature of the precursor electronic states in light-induced spin-correlated radical pair formations.


Subject(s)
Cryptochromes/chemistry , Cryptochromes/metabolism , Light , Animals , Electron Spin Resonance Spectroscopy , Electron Transport/radiation effects , Flavin-Adenine Dinucleotide/metabolism , Free Radicals/chemistry , Free Radicals/metabolism , Models, Molecular , Protein Conformation , Xenopus Proteins/chemistry , Xenopus Proteins/metabolism , Xenopus laevis
11.
J Phys Chem B ; 114(45): 14755-62, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-20666450

ABSTRACT

The unique physical properties of photoexcited triplet states have been explored in numerous spectroscopic studies employing electron paramagnetic resonance (EPR). So far, however, no quantum interference effects were found in these systems in the presence of a magnetic field. In this study, we report the successful EPR detection of nuclear quantum oscillations in an organic triplet state subject to an external magnetic field. The observed quantum coherences can be rationalized using an analytical theory. Analysis suggests that the nuclear spins are actively involved in the intersystem crossing process. The novel mechanism also acts as a source of oscillatory nuclear spin polarization that gives rise to large signal enhancement in nuclear magnetic resonance (NMR). This opens new perspectives for the analysis of chemically induced dynamic nuclear polarization in mechanistic studies of photoactive proteins.

12.
Plant J ; 62(2): 192-202, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20088902

ABSTRACT

Plastids contain sigma factors, i.e. gene-regulatory proteins for promoter binding and transcription initiation. Despite the physical and functional similarity shared with their prokaryotic counterparts, the plant sigma factors have distinguishing features: most notably the existence of a variable extra sequence comprising their N-terminal portions. This distinct architecture is reflected by functional differences, including phosphorylation control by organellar protein kinase(s) closely related to nucleocytosolic, rather than bacterial-type, enzymes. In particular, cpCK2, a nuclear-coded plastid-targeted casein kinase 2, has been implicated as a key component in plant sigma factor phosphorylation and transcriptional regulation (Eur. J. Biochem. 269, 2002, 3329; Planta, 219, 2004, 298). Although this notion is based mainly on biochemical evidence and in vitro systems, the recent availability of Arabidopsis sigma knock-out lines for complementation by intact and mutant sigma cDNAs has opened up new strategies for the study of transcription regulatory mechanisms in vivo. Using Arabidopsis sigma factor 6 (AtSIG6) as a paradigm, we present data suggesting that: (i) this factor is a substrate for regulatory phosphorylation by cpCK2 both in vitro and in vivo; (ii) cpCK2 phosphorylation of SIG6 occurs at multiple sites, which can widely differ in their effect on the visual and/or molecular phenotype; (iii) in vivo usage of the perhaps most critical cpCK2 site defined by Ser174 requires (pre-)phosphorylation at the n + 3 serine residue Ser177, pointing to 'pathfinder' kinase activity capable of generating a functional cpCK2 substrate site.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Casein Kinase II/metabolism , Chloroplasts/enzymology , Sigma Factor/metabolism , Amino Acid Motifs , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Gene Knockout Techniques , Mutagenesis, Site-Directed , Phosphorylation , RNA, Plant/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sigma Factor/genetics
13.
Plant Cell Physiol ; 50(7): 1382-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19439445

ABSTRACT

Like bacteria, plastids contain sigma factors for promoter binding and transcription initiation. Accumulating evidence suggests that members of the plant sigma factor family can have specialized non-redundant roles in terms of promoter preference in various developmental and environmental situations. To specify regulatory determinants, we have chosen pairwise exchange of portions of Arabidopsis sigma coding regions, followed by transformation of the chimeric constructs into a sigma 6 knockout line. The resulting phenotypes and plastid RNA patterns point to an important though not exclusive role for the highly variable N-terminal portion of plant sigma proteins.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Plastids/genetics , Sigma Factor/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA, Complementary/genetics , Gene Expression Regulation, Plant , Gene Knockout Techniques , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , RNA, Plant/genetics , Sigma Factor/genetics
14.
J Acoust Soc Am ; 125(3): 1351-61, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19275292

ABSTRACT

For the investigation of the physical processes of human phonation, inhomogeneous synthetic vocal folds were developed to represent the full fluid-structure-acoustic coupling. They consisted of polyurethane rubber with a stiffness in the range of human vocal folds and were mounted in a channel, shaped like the vocal tract in the supraglottal region. This test facility permitted extensive observations of flow-induced vocal fold vibrations, the periodic flow field, and the acoustic signals in the far field of the channel. Detailed measurements were performed applying particle-image velocimetry, a laser-scanning vibrometer, a microphone, unsteady pressure sensors, and a hot-wire probe, with the aim of identifying the physical mechanisms in human phonation. The results support the existence of the Coanda effect during phonation, with the flow attaching to one vocal fold and separating from the other. This behavior is not linked to one vocal fold and changes stochastically from cycle to cycle. The oscillating flow field generates a tonal sound. The broadband noise is presumed to be caused by the interaction of the asymmetric flow with the downstream-facing surfaces of the vocal folds, analogous to trailing-edge noise.


Subject(s)
Acoustics , Voice Quality , Humans , Noise , Phonation/physiology , Vibration , Vocal Cords/physiology
16.
J Am Chem Soc ; 129(51): 15935-46, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18052250

ABSTRACT

The structure of the secondary radical pair, P865(+)Q(A)-, in fully deuterated and Zn-substituted reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides R-26 has been determined by high-time resolution and high-field electron paramagnetic resonance (EPR). A computer analysis of quantum beat oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the orientation of the various magnetic tensors of P865(+)Q(A)- with respect to a magnetic reference frame. The orientation of the g-tensor of P865(+) in an external reference system is adapted from a single-crystal W-band (95 GHz) EPR study [Klette, R.; Törring, J. T.; Plato, M.; Möbius, K.; Bönigk, B.; Lubitz, W. J. Phys. Chem. 1993, 97, 2015-2020]. Thus, we obtain the three-dimensional structure of the charge separated state P865(+)Q(A)- on a nanosecond time scale after light-induced charge separation. Comparison with crystallographic data reveals that the position of the quinone is essentially the same as that in the X-ray structure. However, the head group of Q(A)- has undergone a 60 degrees rotation in the ring plane relative to its orientation in the crystal structure. Analysis suggests that the two different QA conformations are functionally relevant states which control the electron-transfer kinetics from Q(A)- to the secondary quinone acceptor QB. It appears that the rate-limiting step of this reaction is a reorientation of Q(A)- in its binding pocket upon light-induced reduction. The new kinetic model accounts for striking observations by Kleinfeld et al. who reported that electron transfer from Q(A)- to QB proceeds in RCs cooled to cryogenic temperature under illumination but does not proceed in RCs cooled in the dark [Kleinfeld, D.; Okamura, M. Y.; Feher, G. Biochemistry 1984, 23, 5780-5786].


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Light , Photosynthetic Reaction Center Complex Proteins/chemistry , Quantum Theory , Rhodobacter sphaeroides/chemistry , Crystallography, X-Ray , Protein Conformation
17.
J Chem Phys ; 127(11): 114503, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17887853

ABSTRACT

Pulsed electron nuclear double resonance (ENDOR) using a modified Davies-type [Phys. Lett. 47A, 1 (1974)] sequence is employed to study the hyperfine (HF) structure of the photoexcited triplet state of pentacene dispersed in protonated and deuterated p-terphenyl single crystals. The strong electron spin polarization and long phase memory time of triplet pentacene enable us to perform the ENDOR measurements on the S=1 spin system at room temperature. Proton HF tensor elements and spin density values of triplet pentacene are extracted from a detailed angular-dependent study in which the orientation of the magnetic field is varied systematically in two different pentacene planes. Analysis reveals that the pentacene molecule is no longer planar in the p-terphenyl host lattice. The distortion is more pronounced in the deuterated crystal where the unit cell dimensions are slightly smaller than those of the protonated crystal.

18.
FEBS Lett ; 580(28-29): 6617-22, 2006 Dec 11.
Article in English | MEDLINE | ID: mdl-17118361

ABSTRACT

Chloroplasts sigma factors act in concert with PEP, the bacterial-type plastid RNA polymerase. Using a sigma knockout line from Arabidopsis thaliana, we investigated mutant-specific changes in plastid gene expression at RNA level. One characteristic feature was the appearance of a long transcript that spans the atpB-E operon and extends considerably into the far-upstream region of atpB. This region reveals a cluster of typical promoter elements for NEP, the second (phage-type) plastid RNA polymerase. The NEP promoter cluster can help maintain RNA synthesis in situations where no functional sigma factor is available for PEP.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Mutation/genetics , Promoter Regions, Genetic/genetics , Sigma Factor/genetics , Amino Acid Motifs , Base Sequence , DNA, Chloroplast/genetics , DNA-Directed RNA Polymerases/genetics , Models, Genetic , Molecular Sequence Data , Molecular Weight , Mutant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Plant Physiol ; 142(2): 642-50, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16905663

ABSTRACT

Plants contain nuclear-coded sigma factors for initiation of chloroplast transcription. The in vivo function of individual members of the sigma gene family has become increasingly accessible by knockout and complementation strategies. Here we have investigated plastid gene expression in an Arabidopsis (Arabidopsis thaliana) mutant with a defective gene for sigma factor 6. RNA gel-blot hybridization and real-time reverse transcription polymerase chain reaction together indicate that this factor has a dual developmental role, with both early and persistent (long-term) activities. The early role is evident from the sharp decrease of certain plastid transcripts only in young mutant seedlings. The second (persistent) role is reflected by the up- and down-regulation of other transcripts at the time of primary leaf formation and subsequent vegetative development. We conclude that sigma 6 does not represent a general factor, but seems to have specialized roles in developmental stage- and gene-specific plastid transcription. The possibility that plastid DNA copy number might be responsible for the altered transcript patterns in mutant versus wild type was excluded by the results of DNA gel-blot hybridization. Retransformation of the knockout line with the full-length sigma 6 cDNA further established a causal relationship between the functional sigma gene and the resulting phenotype.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Gene Expression Regulation, Plant/physiology , Sigma Factor/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA, Plant/metabolism , Gene Deletion , Gene Expression Regulation, Developmental/physiology , Genetic Complementation Test , Mutation , Plastids/metabolism , Sigma Factor/genetics , Time Factors , Transcription, Genetic
20.
Magn Reson Chem ; 43 Spec no.: S103-9, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16235208

ABSTRACT

We demonstrate the potential of high-field (HF) time-resolved electron paramagnetic resonance (EPR) spectroscopy to reveal unique information about electron transfer processes and the structure of photosynthetic systems. The lineshapes and electron spin polarization (ESP) of spin-correlated radical pair (SCRP) spectra recorded with HF-EPR are very sensitive to the magnetic parameters, interactions, and geometry of the radicals in the pair. This sensitivity facilitates an analysis of more sophisticated models and methods to reveal the important relationship between structural organization and light-induced electron transfer of the photosynthetic proteins. In this review, we report on a new time-resolved HF and multi-frequency EPR approach developed in the Freiburg laboratory in cooperation with the Argonne Photosynthesis group. The method is designed to probe the geometric structure of charge separated states in the photosynthetic membrane. First, we discuss the magneto-orientation of photosynthetic cyanobacteria as revealed by time-resolved HF-EPR of SCRPs. Then, we demonstrate how the three-dimensional structure of the SCRP P700(+)A1 from photosystem I of oxygenic photosynthesis and its arrangement in the membrane is obtained from application of multi-frequency including time-resolved HF-EPR techniques.


Subject(s)
Photosynthesis , Photosynthetic Reaction Center Complex Proteins/chemistry , Cyanobacteria/enzymology , Cyanobacteria/ultrastructure , Electron Spin Resonance Spectroscopy , Electron Transport , Free Radicals/chemistry , Magnetics , Microscopy, Electron , Photosynthetic Reaction Center Complex Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...