Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(9): e2313464121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38346211

ABSTRACT

Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.


Subject(s)
Bioprinting , Tissue Engineering , Humans , Tissue Engineering/methods , Cornea , Bioprinting/methods , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Hydrogels/chemistry
2.
Ann Transl Med ; 10(7): 391, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35530954

ABSTRACT

Background: Acetabular fractures account for 10% of pelvis injuries, which are especially difficult to treat in developing countries with less access to resources. 3D printing has previously been shown to be a beneficial method of surgical planning, however the steep initial costs associated with purchasing a 3D printer may prevent some facilities form utilizing this technique. The purpose of this study was to develop 3D printed models for acetabular surgery using methodologies of varying cost to determine differences in model accuracy and overall quality. Methods: Five acetabular fracture models were developed from de-identified CT data using (I) proprietary and open-source segmentation software and (II) fused deposition modeling (FDM) and stereolithography (SLA) 3D printing methods. The distance between the posterior inferior iliac spine (PIIS) and the ischial spine as well as a unique fracture fragment for each model was compared between the different printing methodologies. The models were then given to 5 physicians and assessed on their overall accuracy compared to traditional 2D images. Results: Printing methodology did not affect the distance from PIIS to ischial spine (P=0.263). However, fracture fragment representation differed across 3D printed models, with the most accurate model produced by the high-end resin-based printer (P=0.007). The survey analysis showed that the low-cost printing methods produced models that were not as accurate in their representation of the fractured region (P=0.008). Conclusions: The differences between models developed using traditional methods and low-cost methods have slight differences but may still provide useful information when developing a surgical plan.

3.
SAGE Open Med Case Rep ; 8: 2050313X20927600, 2020.
Article in English | MEDLINE | ID: mdl-32551116

ABSTRACT

The purpose of this study was to investigate the usage of an anatomical model to improve surgical planning of a complex schwannoma resection. As advancements in additive manufacturing continue to prosper, new applications of this valuable technology are being implemented in the medical field. One of the most recent applications has been in the development of patient-specific anatomical models for unique clinical education as well as for preoperative planning. In this case, a multidisciplinary team with expertise in research, three-dimensional printing, and medicine was formed to develop a three-dimensional printed model that could be used to help plan the reduction of a tumor from the cervical spine of a pediatric patient. Image segmentation and stereolithography creation were accomplished using Mimics and 3-matic, respectively. Models were developed on two different printer types to view different aspects of the region of interest. Reports from the operating surgeon indicated that the model was instrumental in the planning procedures of the operation and reducing operation time.

SELECTION OF CITATIONS
SEARCH DETAIL
...