Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 5(3): 299-317, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26264032

ABSTRACT

GABAergic local circuit neurons are critical for the network activity and functional interaction of the amygdala and hippocampus. Previously, we obtained evidence for a GABAergic contribution to the hippocampal projection into the basolateral amygdala. Using fluorogold retrograde labeling, we now demonstrate that this projection indeed has a prominent GABAergic component comprising 17% of the GABAergic neurons in the ventral hippocampus. A majority of the identified GABAergic projection neurons are located in the stratum oriens of area CA1, but cells are also found in the stratum pyramidale and stratum radiatum. We could detect the expression of different markers of interneuron subpopulations, including parvalbumin and calbindin, somatostatin, neuropeptide Y, and cholecystokinin in such retrogradely labeled GABA neurons. Thus GABAergic projection neurons to the amygdala comprise a neurochemically heterogeneous group of cells from different interneuron populations, well situated to control network activity patterns in the amygdalo-hippocampal system.

2.
Brain Struct Funct ; 217(1): 5-17, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21584649

ABSTRACT

GABAergic neurons of the amygdala are thought to play a critical role in establishing networks for feedback and feedforward inhibition and in mediating rhythmic network activity patterns relevant for emotional behavior, determination of stimulus salience, and memory strength under stressful experiences. These functions are typically fulfilled in interplay of amygdala and hippocampus. Therefore, we explored the putative connectivity of GABAergic neurons with the hippocampo-amygdalar projection with the anterograde tracers Phaseolus vulgaris leucoagglutinin (Phal) and Miniruby injected to GAD67-GFP knock-in mice in which GABAergic neurons are labeled by the expression of the gene for green fluorescent protein (GFP) inserted to the GAD1 gene locus (Tamamaki et al. J Comp Neurol 467:60-79, 2003). We found that, while hippocampal axons target all nuclei of the amygdala, the densest fiber plexus was found in the posterior basomedial nucleus. Electron microscopy revealed that the vast majority of contacts in this nucleus were formed by thin fibers making small asymmetrical contacts, predominantly on GFP-negative profiles. However, several asymmetrical contacts could also be seen on GFP-positive profiles. A surprising result was the occasional occurrence of anterogradely labeled symmetrical synapses indicating a GABAergic contribution to the projection from the hippocampus to the amygdala. While hippocampal input to the amygdala appears to be largely excitatory and targets non-GABAergic neurons, our data provide evidence for a direct involvement of GABAergic neurons in the interplay of these regions, either as target in the amygdala or as projection neurons from the hippocampus. These particular "interface neurons" may be of relevance for the information processing in the amygdalo-hippocampal system involved in emotional behavior and memory formation.


Subject(s)
Amygdala/cytology , GABAergic Neurons/metabolism , Hippocampus/cytology , Interneurons/metabolism , Synapses/metabolism , Animals , Biotin/analogs & derivatives , Dextrans , Female , Gene Knock-In Techniques , Glutamate Decarboxylase/genetics , Green Fluorescent Proteins/metabolism , Male , Mice , Microscopy, Electron , Phytohemagglutinins , Rhodamines , Synapses/ultrastructure
3.
Brain Res Bull ; 87(2-3): 312-8, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22108631

ABSTRACT

The substantia nigra pars reticulata (SNR) is the ventral subdivision of the substantia nigra and contains mostly GABAergic neurons. The present study explores whether the SNR relates to all dorsal thalamic nuclei equally or just to a particular group of nuclei, such as first or higher-order nuclei. Injections of biotinylated dextran amine (BDA) were made into the SNR of 10 male adult rats. The distribution of anterogradely labelled axon terminals in the thalamic nuclei was documented. The projections of the SNR to the thalamic nuclei were exclusively to some motor higher-order, but not to first-order thalamic relays. There were bilateral projections to the ventromedial (VM), parafascicular (PF), centromedian (CM) and paracentral (PC) nuclei and unilateral projections to the centrolateral (CL), mediodorsal (MD) and thalamic reticular nucleus (Rt). Labelled axon terminals in the thalamic nuclei ranged from numerous to sparse in VM, PF, CM, CL, PC, MD and Rt. Further, injections into the SNR along its rostral-caudal axis showed specific topographical connections with the thalamic nuclei. The rostral SNR injections showed labelled axon terminals of VM, PF, CL, PC, CM, MD and Rt. Caudal SNR injections showed labelling of VM, PF, PC, CM and MD. All injections showed labelled axons and terminals in the zona incerta. The nigrothalamic GABAergic neurons can be regarded as an important system for the regulation of motor activities. The SNR is in a position to influence large areas of the neocortex by modulating some of the motor higher-order thalamic nuclei directly or indirectly via Rt.


Subject(s)
Brain Mapping , Neural Pathways/physiology , Thalamic Nuclei/physiology , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Dextrans/metabolism , Male , Rats , Rats, Sprague-Dawley , Substantia Nigra/physiology
4.
Behav Brain Res ; 157(1): 45-53, 2005 Feb 10.
Article in English | MEDLINE | ID: mdl-15617770

ABSTRACT

In the present study new-born rats were treated with corticosterone (CORT) between postnatal days 1 and 12. At the age of 16-20 weeks, these animals were tested for spatial learning capacity using an eight-arm radial maze. After behavioral testing, density of cholinergic fibers and sizes of the mossy fiber terminal fields in the hippocampus and number of cholinergic and GABAergic neurons in the septal area were quantified. In the radial arm maze CORT-treated animals initially showed better working memory performance than controls. However, control animals showed a significant improvement of spatial working memory in the last trials and reached similar working memory scores as compared to treated animals. At neither day of training differences in reference memory errors were found between groups. In the diagonal band of Broca, both numbers of cholinergic and GABAergic neurons were increased after corticosterone treatment. The fiber systems in hippocampus showed no significant differences between groups. In conclusion, early postnatal stress induced by CORT administration in neonatal rats results in mild, yet significant morphological and behavioral changes in later life.


Subject(s)
Corticosterone/physiology , Hippocampus/cytology , Maze Learning/physiology , Neurons/cytology , Septum of Brain/cytology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Cholinergic Fibers/physiology , Corticosterone/pharmacology , Female , Hippocampus/physiology , Neurons/physiology , Pregnancy , Random Allocation , Rats , Rats, Wistar , Septum of Brain/physiology , Space Perception/physiology
5.
Peptides ; 25(5): 827-32, 2004 May.
Article in English | MEDLINE | ID: mdl-15177878

ABSTRACT

Trefoil factor family (TFF) peptides, besides their prominent expression in mucous epithelia, are also synthesized in the central nervous system. Previously TFF1 expression was observed in mouse brain astrocytes, while oxytocinergic neurons of the hypothalamo-pituitary axis are recognized sites of TFF3 synthesis. Here, the expression of TFF1, TFF2, and TFF3 was systematically studied using reverse transcription-polymerase chain reaction (RT-PCR) analysis of dissected adult mouse brain regions including the pituitary. Additionally, the developmental profile of TFF expression in murine cerebral cortex and cerebellum was monitored. Overall, the expression patterns of the three TFF genes differed. The TFF1 and TFF2 profiles shared some similarities, whereas the TFF3 expression pattern was completely different. TFF1 was nearly uniformly, but weakly expressed in all brain regions tested. The TFF1 and TFF2 expression patterns differed characteristically in the pituitary where abundant TFF2 transcription was detected in the anterior and not the posterior lobe and the expression level in males was higher than in females. In contrast, TFF3 expression was limited to the hippocampus, the temporal cortex, and the cerebellum, the latter being surprisingly the major site of expression. Here, TFF3 mRNA appeared to be restricted mainly to neurons and not glial cells. Cerebellar TFF3 expression is clearly developmentally regulated (maximum at P15), indicating a role for TFF3 during postnatal cerebellar development.


Subject(s)
Brain/metabolism , Mucins/metabolism , Muscle Proteins/metabolism , Peptides/metabolism , Pituitary Gland/metabolism , Animals , Cerebellar Cortex/metabolism , Cerebellum/metabolism , Female , Gene Expression Profiling , Male , Mice , Mucins/genetics , Muscle Proteins/genetics , Neuroglia/metabolism , Neurons/metabolism , Peptides/genetics , RNA, Messenger/genetics , Trefoil Factor-1 , Trefoil Factor-2 , Trefoil Factor-3
6.
Eur J Neurosci ; 15(7): 1206-18, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11982631

ABSTRACT

The purpose of this study was to investigate amygdala-related fear and anxiety in two inbred rat lines differing in emotionality (RHA/Verh and RLA/Verh), and to relate the behaviour of the animals to neuronal types in different nuclei of the amygdala. The behavioural tests used were the motility test, elevated plus-maze and fear-potentiated startle response. The neurons investigated were immunoreactive for the anxiogenic peptide corticotropin-releasing factor (CRF-ir), the anxiolytic peptide neuropeptide Y (NPY-ir), and the calcium-binding proteins parvalbumin (PARV-ir) and calbindin (CALB-ir). The NPY-ir, PARV-ir and CALB-ir neurons studied were subpopulations of GABAergic neurons. RLA/Verh rats, which showed a significant fear-potentiation of the acoustic startle response, had more CRF-ir projection neurons in the central nucleus of the amygdala. The same RLA/Verh rats were either less or equally anxious in the motility test (similar to open field) and elevated plus-maze as compared with RHA/Verh rats. In accordance with this behaviour, the RLA/Verh rats had more NPY-ir neurons in the lateral, and more PARV-ir neurons in basal nuclei of the amygdala than RHA/Verh rats, but no differences were detected in the number of CRF-ir and CALB-ir neurons of the basolateral complex. In conclusion, the RLA/Verh rats displayed an opposite behaviour in the fear-potentiated startle model and the exploratory tests measuring anxiety based on choice behaviour. Thus, the anxiogenic systems in the central nucleus and anxiolytic systems in the basolateral complex of the amygdala might be differentially involved in the fear-potentiated startle paradigm and exploratory tests in the Roman rat lines.


Subject(s)
Amygdala/metabolism , Calcium-Binding Proteins/metabolism , Exploratory Behavior/physiology , Fear/physiology , Neurons/metabolism , Neuropeptides/metabolism , Reflex, Startle/physiology , Amygdala/cytology , Animals , Avoidance Learning/physiology , Calbindins , Cell Count , Corticotropin-Releasing Hormone/metabolism , Immunohistochemistry , Maze Learning/physiology , Motor Activity/physiology , Neurons/cytology , Neuropeptide Y/metabolism , Parvalbumins/metabolism , Rats , Rats, Inbred Strains , S100 Calcium Binding Protein G/metabolism
7.
J Morphol ; 189(2): 131-143, 1986 Aug.
Article in English | MEDLINE | ID: mdl-29933655

ABSTRACT

In seven species of lungless salamanders, family Plethodontidae, ranging from medium to very small in body size and from small to very large in cell size, the morphology of the eye and the retina were investigated. Haller's rule was only partially corroborated. While the smallest species had the relatively largest eyes, the largest two species, having the largest cells, showed the third and fourth largest eyes of the series. An effect of cell size was also found with regard to eye morphology. Small species with small cells as well as large species with large cells had relatively small retinae and relatively large lenses. In contrast, small eyes with relatively large cells had absolutely and relatively large retinae and relatively small lenses. The retinae of all investigated plethodontids showed a morphology typical for land vertebrates with two fiber and three nuclear layers. Rods, cones and double cones could clearly be distinguished. A fovea or area centralis was not found. Retina ganglion cell and photoreceptor counts show that the number of these elements was lower than in salamandrids. However, determination of the resolution power of miniaturized eyes based on morphological and behavioral data shows that this does not seem to constitute a functional disadvantage. The morphological and functional properties and constraints of eyes of miniaturized salamanders are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...