Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662202

ABSTRACT

According to a widely accepted paradigm of microbiology, steady-state growth rates are determined solely by current growth conditions1-3 and adaptations between growth states are rapid, as recently recapitulated by simple resource allocation models4. However, even in microbes overlapping regulatory networks can yield multi-stability or long-term cellular memory. Species like Listeria monocytogenes5 and Bacillus subtilis "distinguish" distinct histories for the commitment to sporulation6, but it is unclear if these states can persist over many generations. Remarkably, studying carbon co-utilization of Escherichia coli, we found that growth rates on combinations of carbon sources can depend critically on the previous growth condition. Growing in identical conditions, we observed differences in growth rates of up to 25% and we did not observe convergence of growth rates over 15 generations. We observed this phenomenon occurs across combinations of different phosphotransferase (PTS) substrates with various gluconeogenic carbon sources and found it to depend on the transcription factor Mlc.

2.
J Chem Theory Comput ; 15(9): 4974-4981, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31402652

ABSTRACT

Predicting the costructure of small-molecule ligands and their respective target proteins has been a long-standing problem in drug discovery. For weak binding compounds typically identified in fragment-based screening (FBS) campaigns, determination of the correct binding site and correct binding mode is usually done experimentally via X-ray crystallography. For many targets of pharmaceutical interest, however, establishing an X-ray system which allows for sufficient throughput to support a drug discovery project is not possible. In this case, exploration of fragment hits becomes a very laborious and consequently slow process with the generation of protein/ligand cocrystal structures as the bottleneck of the entire process. In this work, we introduce a computational method which is able to reliably predict binding sites and binding modes of fragment-like small molecules using solely the structure of the apoprotein and the ligand's chemical structure as input information. The method is based on molecular dynamics simulations and Markov-state models and can be run as a fully automated protocol requiring minimal human intervention. We describe the application of the method to a representative subset of different target classes and fragments from historical FBS efforts at Boehringer Ingelheim and discuss its potential integration into the overall fragment-based drug discovery workflow.


Subject(s)
Markov Chains , Molecular Dynamics Simulation , Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...