Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 16(10): e202202015, 2023 May 19.
Article in English | MEDLINE | ID: mdl-36651237

ABSTRACT

Cobalt iron containing layered double hydroxides (LDHs) and spinels are promising catalysts for the electrochemical oxygen evolution reaction (OER). Towards development of better performing catalysts, the precise tuning of mesostructural features such as pore size is desirable, but often hard to achieve. Herein, a computer-controlled microemulsion-assisted co-precipitation (MACP) method at constant pH is established and compared to conventional co-precipitation. With MACP, the particle growth is limited and through variation of the constant pH during synthesis the pore size of the as-prepared catalysts is controlled, generating materials for the systematic investigation of confinement effects during OER. At a threshold pore size, overpotential increased significantly. Electrochemical impedance spectroscopy (EIS) indicated a change in OER mechanism, involving the oxygen release step. It is assumed that in smaller pores the critical radius for gas bubble formation is not met and therefore a smaller charge-transfer resistance is observed for medium frequencies.

2.
Nat Commun ; 13(1): 179, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013310

ABSTRACT

The three-dimensional (3D) distribution of individual atoms on the surface of catalyst nanoparticles plays a vital role in their activity and stability. Optimising the performance of electrocatalysts requires atomic-scale information, but it is difficult to obtain. Here, we use atom probe tomography to elucidate the 3D structure of 10 nm sized Co2FeO4 and CoFe2O4 nanoparticles during oxygen evolution reaction (OER). We reveal nanoscale spinodal decomposition in pristine Co2FeO4. The interfaces of Co-rich and Fe-rich nanodomains of Co2FeO4 become trapping sites for hydroxyl groups, contributing to a higher OER activity compared to that of CoFe2O4. However, the activity of Co2FeO4 drops considerably due to concurrent irreversible transformation towards CoIVO2 and pronounced Fe dissolution. In contrast, there is negligible elemental redistribution for CoFe2O4 after OER, except for surface structural transformation towards (FeIII, CoIII)2O3. Overall, our study provides a unique 3D compositional distribution of mixed Co-Fe spinel oxides, which gives atomic-scale insights into active sites and the deactivation of electrocatalysts during OER.

3.
Angew Chem Int Ed Engl ; 61(5): e202112679, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34796598

ABSTRACT

The electrical double-layer plays a key role in important interfacial electrochemical processes from catalysis to energy storage and corrosion. Therefore, understanding its structure is crucial for the progress of sustainable technologies. We extract new physico-chemical information on the capacitance and structure of the electrical double-layer of platinum and gold nanoparticles at the molecular level, employing single nanoparticle electrochemistry. The charge storage ability of the solid/liquid interface is larger by one order-of-magnitude than predicted by the traditional mean-field models of the double-layer such as the Gouy-Chapman-Stern model. Performing molecular dynamics simulations, we investigate the possible relationship between the measured high capacitance and adsorption strength of the water adlayer formed at the metal surface. These insights may launch the active tuning of solid-solvent and solvent-solvent interactions as an innovative design strategy to transform energy technologies towards superior performance and sustainability.

4.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884941

ABSTRACT

Single-entity electrochemistry allows for assessing electrocatalytic activities of individual material entities such as nanoparticles (NPs). Thus, it becomes possible to consider intrinsic electrochemical properties of nanocatalysts when researching how activity relates to physical and structural material properties. Conversely, conventional electrochemical techniques provide a normalized sum current referring to a huge ensemble of NPs constituting, along with additives (e.g., binders), a complete catalyst-coated electrode. Accordingly, recording electrocatalytic responses of single NPs avoids interferences of ensemble effects and reduces the complexity of electrocatalytic processes, thus enabling detailed description and modelling. Herein, we present insights into the oxygen evolution catalysis at individual cubic Co3O4 NPs impacting microelectrodes of different support materials. Simulating diffusion at supported nanocubes, measured step current signals can be analyzed, providing edge lengths, corresponding size distributions, and interference-free turnover frequencies. The provided nano-impact investigation of (electro-)catalyst-support effects contradicts assumptions on a low number of highly active sites.


Subject(s)
Cobalt/chemistry , Nanoparticles/chemistry , Oxides/chemistry , Oxygen/chemistry , Catalysis , Diffusion , Electrochemical Techniques/instrumentation , Microelectrodes , Microscopy, Electron, Transmission
5.
Sci Rep ; 8(1): 15400, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30337612

ABSTRACT

Superhierarchically rough films are rapidly synthesised on metal substrates via electrochemically triggered self-assembly of meso/macroporous-structured metal-organic framework (MOF) crystals. These coatings are applied to immobilise a functional oil with low surface energy to provide stable coatings repellent to a wide range of hydrophobic as well as hydrophilic fluids. Such omniphobic surfaces are highly interesting for several applications such as anti-fouling, anti-icing, and dropwise condensation, and become easily scalable with the presented bottom-up fabrication approach. As investigated by environmental scanning electron microscopy (ESEM), the presented perfluorinated oil-infused Cu-BTC coating constitutes of a flat liquid-covered surface with protruding edges of octahedral superstructured MOF crystals. Water and non-polar diiodomethane droplets form considerably high contact angles and even low-surface-tension fluids, e.g. acetone, form droplets on the infused coating. The repellent properties towards the test fluids do not change upon extended water spraying in contrast to oil-infused porous copper oxide or native copper surfaces. It is discussed in detail, how the presented electrodeposited MOF films grow and provide a proficient surface morphology to stabilise the functional oil film due to hemiwicking.

6.
Microb Cell Fact ; 12: 116, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24261588

ABSTRACT

BACKGROUND: Norleucine and norvaline belong to a group of non-canonical amino acids which are synthesized as byproducts in the branched chain amino acid metabolism of Escherichia coli. The earlier observed misincorporation of these rare amino acids into recombinant proteins has attracted increasing attention due to the rising use of protein based biopharmaceuticals in clinical application. Experimental data revealed pyruvate overflow inducing conditions, which typically occur in oxygen limited zones of large-scale fermentations as a major reason leading to norvaline and norleucine synthesis during E. coli cultivation. Previous approaches to suppress misincorporation of norleucine and norvaline considered growth media supplementation with the relevant canonical isostructural compounds, but no research was performed on the impact of the overflow metabolism related trace elements molybdenum, nickel and selenium. These elements form essential parts of the formate hydrogen lyase (FHL) metalloprotein complex, which is a key enzyme of anaerobic pyruvate metabolism in E. coli and could therefore represent a crucial connection to the pyruvate accumulation associated biosynthesis of rare amino acids. RESULTS: In this study, the trace element associated response of recombinant antibody producing E. coli to oxygen limitation at high glucose concentration with a special focus on non-canonical amino acids was analysed. During fed-batch cultivation with provoked oxygen limitation and glucose excess norleucine and norvaline were only accumulated in the absence of molybdenum, nickel and selenium. In contrast, the trace element supplemented stress fermentation showed significantly reduced concentrations of these rare amino acids and the major signature fermentation product formate, supporting the correlation between a functional formate hydrogen lyase complex and low unspecific amino acid synthesis under oxygen limitation at high glucose concentration. CONCLUSIONS: The formation of norleucine and norvaline by recombinant E. coli during cultivation with provoked oxygen limitation and glucose excess can be reduced to levels at the detection limit by adding the trace elements molybdenum, selenium and nickel to the fermentation medium. Even under the metabolic burden during induction phase the physiologically available concentrations of non-canonical amino acids remained low. Since our results allow facile process changes that can be easily implemented to avoid the undesirable accumulation of norleucine and norvaline, we consider this study highly interesting for improved process development in E. coli based recombinant drug production and the future development of possible mechanisms to reduce misincorporation events into protein based biopharmaceuticals.


Subject(s)
Glucose/metabolism , Norleucine/metabolism , Oxygen/metabolism , Trace Elements/metabolism , Valine/analogs & derivatives , Amino Acids , Escherichia coli/growth & development , Escherichia coli/metabolism , Fermentation , Norleucine/biosynthesis , Valine/biosynthesis , Valine/metabolism
7.
Amino Acids ; 44(4): 1225-31, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23306451

ABSTRACT

In this study, a precise and reliable ultra-high performance liquid chromatography (UHPLC) method for the simultaneous determination of non-canonical (norvaline and norleucine) and standard amino acids (aspartic acid, glutamic acid, serine, histidine, glycine, threonine, arginine, tyrosine, methionine, valine, phenylalanine, isoleucine, leucine) in biopharmaceutical-related fermentation processes was established. After pre-column derivatization with ortho-phthaldialdehyde and 2-mercaptoethanol, the derivatives were separated on a sub-2 µm particle C18 reverse-phase column. Identification and quantification of amino acids were carried out by fluorescence detection. To test method feasibility on standard HPLC instruments, the assay was properly transferred to a core-shell particle C18 reverse-phase column. The limits of detection showed excellent sensitivity by values from 0.06 to 0.17 pmol per injection and limits of quantification between 0.19 and 0.89 pmol. In the present study, the newly established UHPLC method was applied to a recombinant antibody Escherichia coli fermentation process for the analysis of total free amino acids. We were able to specifically detect and quantify the unfavorable amino acids in such complex samples. Since we observed trace amounts of norvaline and norleucine during all fermentation phases, an obligatory process monitoring should be considered to improve quality of recombinant protein drugs in future.


Subject(s)
Antibodies/metabolism , Chromatography, High Pressure Liquid/methods , Norleucine/analysis , Valine/analogs & derivatives , Antibodies/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Fermentation , Industrial Microbiology , Norleucine/metabolism , Valine/analysis , Valine/metabolism
8.
Biol Chem ; 394(5): 695-701, 2013 May.
Article in English | MEDLINE | ID: mdl-23324382

ABSTRACT

The stepwise synthesis of thymidine triphosphate (TTP) requires a kinase for phosphorylation in the last step. Because pyruvate kinase (PK) using phosphoenolpyruvate (PEP) as substrate can regenerate adenosine triphosphate and phosphorylate thymidine diphosphate as well, we chose this enzyme for the synthesis of TTP via an enzymatic cascade reaction. The metalloenzyme PK shows pronounced promiscuity and therefore fits well to the conditions of this reaction. PK commonly used today is isolated from rabbit muscle. We cloned and expressed the respective open reading frame in Escherichia coli, purified, and characterized the His-tagged recombinant enzyme. The enzyme has an activity optimum at 37°C and in the pH range from 7.4 to 7.8. K(M) constants conformed well with the isolated native enzyme for adenosine diphosphate (ADP) to 0.37±0.02 mM and for PEP to 0.07±0.01 mM. The recombinant enzyme shows the following range in its substrate specificity: ADP>dADP>dGDP>dCDP>thymidine diphosphate (TDP). It allows the phosphorylation of TDP to TTP in high yield (up to 95%). The metal ions Mg(2+) and K(+) are necessary for full enzymatic activity. The addition of transition metal ions such as Mn(2+), Cu(2+), Co(2+), and Ni(2+) reduces activity. Storage of the enzyme at -20°C retains full activity.


Subject(s)
Muscles/enzymology , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Animals , Hydrogen-Ion Concentration , Kinetics , Phosphoenolpyruvate/chemistry , Phosphoenolpyruvate/metabolism , Pyruvate Kinase/isolation & purification , Rabbits , Thymine Nucleotides/chemistry , Thymine Nucleotides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...