Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 117(5): 326-335, 2016 11.
Article in English | MEDLINE | ID: mdl-27381325

ABSTRACT

Although most Hymenoptera reproduce via arrhenotokous haplodiploidy, the underlying genetic mechanisms vary. Of these, the most widespread mechanism appears to be single-locus complementary sex determination (sl-CSD), in which individuals that are diploid and heterozygous at a sex-determining locus are female, and individuals that are homozygous or hemizygous are male. Because inbreeding increases the probability of producing diploid males, which are often sterile or inviable, sl-CSD can generate substantial inbreeding depression. To counteract this, Hymenoptera with traits that promote inbreeding, such as gregariousness, may evolve one or more of the following: inbreeding avoidance, functional diploid males or alternative sex determination mechanisms. Here, we investigate sex determination, inbreeding depression and inbreeding avoidance in Neodiprion lecontei, a gregarious, pine-feeding sawfly in the family Diprionidae. First, via inbreeding experiments and flow cytometry, we demonstrate that this species has CSD. By modeling expected sex ratios under different conditions, we also show that our data are consistent with sl-CSD. Second, via tracking survival in inbred and outbred families, we demonstrate that inbred families have reduced larval survival and that this mortality is partly attributable to the death of diploid males. Third, using a no-choice mating assay, we demonstrate that females are less willing to mate with siblings than nonsiblings. Together, these results suggest that inbreeding depression stemming from CSD has shaped mating behavior in N. lecontei. These results also set the stage for future comparative work that will investigate the interplay between sex determination, ecology and behavior in additional diprionid species that vary in larval gregariousness.


Subject(s)
Hymenoptera/genetics , Inbreeding Depression , Inbreeding , Sex Determination Processes , Sexual Behavior, Animal , Animals , Diploidy , Female , Genetic Fitness , Hymenoptera/physiology , Male , Sex Ratio
2.
Article in English | MEDLINE | ID: mdl-20413707

ABSTRACT

A complete understanding of the role of natural selection in driving evolutionary change requires accurate estimates of the strength of selection acting in the wild. Accordingly, several approaches using a variety of data-including patterns of DNA variability, spatial and temporal changes in allele frequencies, and fitness estimates-have been developed to identify and quantify selection on both genotypes and phenotypes. Here, we review these approaches, drawing on both recent and classic examples to illustrate their utility and limitations. We then argue that by combining estimates of selection at multiple levels-from individual mutations to phenotypes-and at multiple timescales-from ecological to evolutionary-with experiments that demonstrate why traits are under selection, we can gain a much more complete picture of the adaptive process.


Subject(s)
Models, Genetic , Selection, Genetic , Alleles , Animals , Biological Evolution , DNA/genetics , Gene Frequency , Genotype , Peromyscus/genetics , Phenotype , Smegmamorpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...