Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 90(19): 8542-51, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27440903

ABSTRACT

UNLABELLED: The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the ßA strand region under the icosahedral 2-fold axis rather than antiparallel to the ßB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. IMPORTANCE: The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ∼1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production.


Subject(s)
Capsid Proteins/metabolism , Capsid Proteins/ultrastructure , Dependovirus/physiology , Dependovirus/ultrastructure , Virus Assembly , Capsid Proteins/genetics , Cryoelectron Microscopy , Imaging, Three-Dimensional , Models, Molecular , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutant Proteins/ultrastructure , Protein Binding , Protein Interaction Mapping , Virion/chemistry , Virion/radiation effects
2.
Mol Ther Methods Clin Dev ; 1: 14034, 2014.
Article in English | MEDLINE | ID: mdl-26015974

ABSTRACT

We describe a new rapid, low cost, and scalable method for purification of various recombinant adeno-associated viruses (rAAVs) from the lysates of producer cells of either mammalian or insect origin. The method takes advantage of two general biochemical properties of all characterized AAV serotypes: (i) low isoelectric point of a capsid and (ii) relative biological stability of the viral particle in the acidic environment. A simple and rapid clarification of cell lysate toremove the bulk of proteins and DNA is accomplished by utilizing inexpensive off-the-shelf reagents such as sodium citrate and citric acid. After the low-speed centrifugation step, the supernatant is subjected to cation exchange chromatography via sulfopropyl (SP) column. The eluted virus may then be further concentrated by either centrifugal spin devices or tangential flow filtration yielding material of high titer and Good Manufacturing Practice (GMP) grade biochemical purity. The protocol is validated for rAAV serotypes 2, 8, and 9. The described method makes rAAV vector technology readily available for the low budget research laboratories and could be easily adapted for a large scale GMP production format.

3.
J Virol ; 87(24): 13150-60, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24067976

ABSTRACT

Icosahedral viral capsids are obligated to perform a thermodynamic balancing act. Capsids must be stable enough to protect the genome until a suitable host cell is encountered yet be poised to bind receptor, initiate cell entry, navigate the cellular milieu, and release their genome in the appropriate replication compartment. In this study, serotypes of adeno-associated virus (AAV), AAV1, AAV2, AAV5, and AAV8, were compared with respect to the physical properties of their capsids that influence thermodynamic stability. Thermal stability measurements using differential scanning fluorimetry, differential scanning calorimetry, and electron microscopy showed that capsid melting temperatures differed by more than 20°C between the least and most stable serotypes, AAV2 and AAV5, respectively. Limited proteolysis and peptide mass mapping of intact particles were used to investigate capsid protein dynamics. Active hot spots mapped to the region surrounding the 3-fold axis of symmetry for all serotypes. Cleavages also mapped to the unique region of VP1 which contains a phospholipase domain, indicating transient exposure on the surface of the capsid. Data on the biophysical properties of the different AAV serotypes are important for understanding cellular trafficking and is critical to their production, storage, and use for gene therapy. The distinct differences reported here provide direction for future studies on entry and vector production.


Subject(s)
Capsid/chemistry , Dependovirus/chemistry , Calorimetry, Differential Scanning , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Dependovirus/classification , Dependovirus/genetics , Dependovirus/ultrastructure , Genetic Therapy , Genetic Vectors/chemistry , Genetic Vectors/genetics , Genetic Vectors/metabolism , Microscopy, Electron , Protein Stability
4.
Virology ; 444(1-2): 374-83, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23906709

ABSTRACT

Twenty-eight bacteriophages infecting the local host Bacillus pumilus BL-8 were isolated, purified, and characterized. Nine genomes were sequenced, of which six were annotated and are the first of this host submitted to the public record. The 28 phages were divided into two groups by sequence and morphological similarity, yielding 27 cluster BpA phages and 1 cluster BpB phage, which is a BL-8 prophage. Most of the BpA phages have a host range restricted to distantly related strains, B. pumilus and B. simplex, reflecting the complexities of Bacillus taxonomy. Despite isolation over wide geographic and temporal space, the six cluster BpA phages share most of their 23 functionally annotated protein features and show a high degree of sequence similarity, which is unique among phages of the Bacillus genera. This is the first report of B. pumilus phages since 1981.


Subject(s)
Bacillus Phages/genetics , Bacillus Phages/isolation & purification , Bacillus/virology , DNA, Viral/chemistry , DNA, Viral/genetics , Genome, Viral , Bacillus Phages/classification , Bacillus Phages/ultrastructure , Cluster Analysis , Host Specificity , Microscopy, Electron, Transmission , Molecular Sequence Data , Sequence Analysis, DNA
5.
J Virol ; 86(21): 11877-85, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22915820

ABSTRACT

Incubation of highly purified adeno-associated virus (AAV) capsids in vitro at pH 5.5 induced significant autocleavage of capsid proteins at several amino acid positions. No autocleavage was seen at pH 7.5. Examination of other AAV serotypes showed at least two different pH-induced cleavage patterns, suggesting that different serotypes have evolved alternative protease cleavage sites. In contrast, incubation of AAV serotypes with an external protease substrate showed that purified AAV capsid preparations have robust protease activity at neutral pH but not at pH 5.5, opposite to what is seen with capsid protein autocleavage. Several lines of evidence suggested that protease activity is inherent in AAV capsids and is not due to contaminating proteins. Control virus preparations showed no protease activity on external substrates, and filtrates of AAV virus preparations also showed no protease activity contaminating the capsids. Further, N-terminal Edman sequencing identified unique autocleavage sites in AAV1 and AAV9, and mutagenesis of amino acids adjacent to these sites eliminated cleavage. Finally, mutation of an amino acid in AAV2 (E563A) that is in a conserved pH-sensitive structural region eliminated protease activity on an external substrate but did not seem to affect autocleavage. Taken together, our data suggested that AAV capsids have one or more protease active sites that are sensitive to pH induction. Further, it appears that acidic pHs comparable to those seen in late endosomes induce a structural change in the capsid that induces autolytic protease activity. The pH-dependent protease activity may have a role in viral infection.


Subject(s)
Capsid Proteins/metabolism , Capsid/drug effects , Capsid/enzymology , Dependovirus/drug effects , Dependovirus/enzymology , Peptide Hydrolases/metabolism , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Mutant Proteins/metabolism , Protein Conformation/drug effects , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...