Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(6): 1381-1397, 2023 03.
Article in English | MEDLINE | ID: mdl-35561000

ABSTRACT

Long-read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long-read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long-read sequencing data to generate a high-quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage-specific loss of this cluster. Beyond polar fishes, our results highlight the power of long-read sequencing to understand genome evolution.


Subject(s)
Fishes , Perciformes , Animals , Fishes/genetics , Adaptation, Physiological/genetics , Perciformes/genetics , Acclimatization , Hemoglobins
2.
Mol Phylogenet Evol ; 162: 107211, 2021 09.
Article in English | MEDLINE | ID: mdl-34029716

ABSTRACT

Modern genetic data sets present unprecedented opportunities to understand the evolutionary origins of diverse taxonomic groups. When the timing of key events is known, it is possible to investigate biogeographic history in the context of major phenomena (e.g., cooling of a major ocean). In this study, we investigated the biogeographic history of the suborder Zoarcoidei, a globally distributed fish group that includes species inhabiting both poles that produce antifreeze proteins to survive chronic subfreezing temperatures. We first generated a multi-locus, time-calibrated phylogeny for the group. We then used biogeographic modeling to reconstruct ancestral ranges across the tree and to quantify the type and frequency of biogeographic events (e.g., founder, dispersal). With these results, we considered how the cooling of the Southern and Arctic Oceans, which reached their present-day subfreezing temperatures 10-15 million years ago (Mya) and 2-3 Mya, respectively, may have shaped the group's evolutionary history, with an emphasis on the most speciose and widely distributed family, eelpouts (family Zoarcidae). Our phylogenetic results clarified the Zoarcoidei taxonomy and showed that the group began to diversify in the Oligocene ~31-32 Mya, with the center of origin for all families in north temperate waters. Within-area speciation was the most common biogeographic event in the group's history (80% of all events) followed by dispersal (20%). Finally, we only found evidence, albeit limited, for ocean cooling underpinning diversification of eelpouts living in the high Antarctic over the last 10 million years.


Subject(s)
Perciformes , Phylogeny , Phylogeography , Animals , Oceans and Seas , Perciformes/classification , Perciformes/genetics
3.
Genome ; 61(4): 241-247, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29268023

ABSTRACT

The mangrove rivulus, Kryptolebias marmoratus, is one of only two self-fertilizing hermaphroditic fish species and inhabits mangrove forests. While selfing can be advantageous, it reduces heterozygosity and decreases genetic diversity. Studies using microsatellites found that there are variable levels of selfing among populations of K. marmoratus, but overall, there is a low rate of outcrossing and, therefore, low heterozygosity. In this study, we used whole-genome data to assess the levels of heterozygosity in different lineages of the mangrove rivulus and infer the phylogenetic relationships among those lineages. We sequenced whole genomes from 15 lineages that were completely homozygous at microsatellite loci and used single nucleotide polymorphisms (SNPs) to determine heterozygosity levels. More variation was uncovered than in studies using microsatellite data because of the resolution of full genome sequencing data. Moreover, missense polymorphisms were found most often in genes associated with immune function and reproduction. Inferred phylogenetic relationships suggest that lineages largely group by their geographic distribution. The use of whole-genome data provided further insight into genetic diversity in this unique species. Although this study was limited by the number of lineages that were available, these data suggest that there is previously undescribed variation within lineages of K. marmoratus that could have functional consequences and (or) inform us about the limits to selfing (e.g., genetic load, accumulation of deleterious mutations) and selection that might favor the maintenance of heterozygosity. These results highlight the need to sequence additional individuals within and among lineages.


Subject(s)
Cyprinodontiformes/genetics , Hermaphroditic Organisms/genetics , Self-Fertilization , Whole Genome Sequencing/methods , Animals , Caribbean Region , Cyprinodontiformes/classification , Genome/genetics , Geography , Hermaphroditic Organisms/classification , Heterozygote , Homozygote , Microsatellite Repeats/genetics , Phylogeny , Polymorphism, Single Nucleotide , Vertebrates/classification , Vertebrates/genetics
4.
Genome Biol Evol ; 8(9): 3006-3010, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27604881

ABSTRACT

The molecular clock is a valuable and widely used tool for estimating evolutionary rates and timescales in biological research. There has been considerable progress in the theory and practice of molecular clocks over the past five decades. Although the idea of a molecular clock was originally put forward in the context of protein evolution and advanced using various biochemical techniques, it is now primarily applied to analyses of DNA sequences. An interesting but very underappreciated aspect of molecular clocks is that they can be based on genetic data other than DNA or protein sequences. For example, evolutionary timescales can be estimated using microsatellites, protein folds, and even the extent of recombination. These genome features hold great potential for molecular dating, particularly in cases where nucleotide sequences might be uninformative or unreliable. Here we present an outline of the different genetic data types that have been used for molecular dating, and we describe the features that good molecular clocks should possess. We hope that our article inspires further work on the genome as an evolutionary timepiece.


Subject(s)
Biological Clocks/genetics , Evolution, Molecular , Genome , Animals , Humans
5.
Biol Lett ; 8(6): 979-82, 2012 Dec 23.
Article in English | MEDLINE | ID: mdl-23054914

ABSTRACT

The deep sea is one of the largest ecosystems on Earth and is home to a highly diverse fauna, with polychaetes, molluscs and peracarid crustaceans as dominant groups. A number of studies have proposed that this fauna did not survive the anoxic events that occurred during the Mesozoic Era. Accordingly, the modern fauna is thought to be relatively young, perhaps having colonized the deep sea after the Eocene/Oligocene boundary. To test this hypothesis, we performed phylogenetic analyses of nuclear ribosomal 18S and 28S and mitochondrial cytochrome oxidase I and 16S sequences from isopod crustaceans. Using a molecular clock calibrated with multiple isopod fossils, we estimated the timing of deep-sea colonization events by isopods. Our results show that some groups have an ancient origin in the deep sea, with the earliest estimated dates spanning 232-314 Myr ago. Therefore, anoxic events at the Permian-Triassic boundary and during the Mesozoic did not cause the extinction of all the deep-sea fauna; some species may have gone extinct while others survived and proliferated. The monophyly of the 'munnopsid radiation' within the isopods suggests that the ancestors of this group evolved in the deep sea and did not move to shallow-water refugia during anoxic events.


Subject(s)
Biological Evolution , Demography , Fossils , Isopoda/genetics , Isopoda/physiology , Phylogeny , Animals , Base Sequence , Bayes Theorem , DNA, Mitochondrial/genetics , History, Ancient , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Oceans and Seas , Population Dynamics , RNA, Ribosomal/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...