Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
An Acad Bras Cienc ; 96(2): e20230894, 2024.
Article in English | MEDLINE | ID: mdl-38922277

ABSTRACT

The need for the identification of risk factors associated to COVID-19 disease severity remains urgent. Patients' care and resource allocation can be potentially different and are defined based on the current classification of disease severity. This classification is based on the analysis of clinical parameters and routine blood tests, which are not standardized across the globe. Some laboratory test alterations have been associated to COVID-19 severity, although these data are conflicting partly due to the different methodologies used across different studies. This study aimed to construct and validate a disease severity prediction model using machine learning (ML). Seventy-two patients admitted to a Brazilian hospital and diagnosed with COVID-19 through RT-PCR and/or ELISA, and with varying degrees of disease severity, were included in the study. Their electronic medical records and the results from daily blood tests were used to develop a ML model to predict disease severity. Using the above data set, a combination of five laboratorial biomarkers was identified as accurate predictors of COVID-19 severe disease with a ROC-AUC of 0.80 ​±â€‹ 0.13. Those biomarkers included prothrombin activity, ferritin, serum iron, ATTP and monocytes. The application of the devised ML model may help rationalize clinical decision and care.


Subject(s)
Biomarkers , COVID-19 , Machine Learning , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/diagnosis , Female , Male , Biomarkers/blood , Middle Aged , Prognosis , Adult , Ferritins/blood , Aged , Brazil , Hematologic Tests/methods , ROC Curve , Risk Factors
2.
FEBS Open Bio ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38925955

ABSTRACT

The design of antibody mimetics holds great promise for revolutionizing therapeutic interventions by offering alternatives to conventional antibody therapies. Structure-based computational approaches have emerged as indispensable tools in the rational design of those molecules, enabling the precise manipulation of their structural and functional properties. This review covers the main classes of designed antigen-binding motifs, as well as alternative strategies to develop tailored ones. We discuss the intricacies of different computational protein-protein interaction design strategies, showcased by selected successful cases in the literature. Subsequently, we explore the latest advancements in the computational techniques including the integration of machine and deep learning methodologies into the design framework, which has led to an augmented design pipeline. Finally, we verse onto the current challenges that stand in the way between high-throughput computer design of antibody mimetics and experimental realization, offering a forward-looking perspective into the field and the promises it holds to biotechnology.

3.
Proc Natl Acad Sci U S A ; 121(21): e2312755121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743628

ABSTRACT

Antigenic similarities between Zika virus (ZIKV) and other flaviviruses pose challenges to the development of virus-specific diagnostic tools and effective vaccines. Starting with a DNA-encoded one-bead-one-compound combinatorial library of 508,032 synthetic, non-natural oligomers, we selected and characterized small molecules that mimic ZIKV epitopes. High-throughput fluorescence-activated cell sorter-based bead screening was used to select molecules that bound IgG from ZIKV-immune but not from dengue-immune sera. Deep sequencing of the DNA from the "Zika-only" beads identified 40 candidate molecular structures. A lead candidate small molecule "CZV1-1" was selected that correctly identifies serum specimens from Zika-experienced patients with good sensitivity and specificity (85.3% and 98.4%, respectively). Binding competition studies of purified anti-CZV1-1 IgG against known ZIKV-specific monoclonal antibodies (mAbs) showed that CZV1-1 mimics a nonlinear, neutralizing conformational epitope in the domain III of the ZIKV envelope. Purified anti-CZV1-1 IgG neutralized infection of ZIKV in cell cultures with potencies comparable to highly specific ZIKV-neutralizing mAbs. This study demonstrates an innovative approach for identification of synthetic non-natural molecular mimics of conformational virus epitopes. Such molecular mimics may have value in the development of accurate diagnostic assays for Zika, as well as for other viruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Zika Virus Infection , Zika Virus , Zika Virus/immunology , Epitopes/immunology , Humans , Zika Virus Infection/immunology , Zika Virus Infection/virology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immunoglobulin G/immunology , Antibodies, Monoclonal/immunology , Molecular Mimicry/immunology
4.
Front Immunol ; 15: 1307546, 2024.
Article in English | MEDLINE | ID: mdl-38361945

ABSTRACT

Zika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_ΔSTP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_ΔSTP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-ΔSTP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_ΔSTP+Alum protected adult mice upon viral challenge. Collectively, the ZK_ΔSTP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies.


Subject(s)
Alum Compounds , Vaccines, DNA , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Mice , Zika Virus/genetics , Antibodies, Neutralizing , Antibodies, Viral , Viral Envelope Proteins/genetics , Mice, Inbred C57BL , Adjuvants, Immunologic , Adjuvants, Pharmaceutic
6.
J Virol ; 98(1): e0140423, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38088350

ABSTRACT

Coronaviruses are large RNA viruses that can infect and spread among humans and animals. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 2019, has evolved since its first detection in December 2019. Deletions are a common occurrence in SARS-CoV-2 evolution, particularly in specific genomic sites, and may be associated with the emergence of highly competent lineages. While deletions typically have a negative impact on viral fitness, some persist and become fixed in viral populations, indicating that they may confer advantageous benefits for the virus's adaptive evolution. This work presents a literature review and data analysis on structural losses in the SARS-CoV-2 genome and the potential relevance of specific signatures for enhanced viral fitness and spread.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , Evolution, Molecular
7.
PLoS Negl Trop Dis ; 17(7): e0011270, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37399197

ABSTRACT

BACKGROUND: The four Dengue viruses (DENV) serotypes were re-introduced in Brazil's Northeast region in a couple of decades, between 1980's and 2010's, where the DENV1 was the first detected serotype and DENV4 the latest. Zika (ZIKV) and Chikungunya (CHIKV) viruses were introduced in Recife around 2014 and led to large outbreaks in 2015 and 2016, respectively. However, the true extent of the ZIKV and CHIKV outbreaks, as well as the risk factors associated with exposure to these viruses remain vague. METHODS: We conducted a stratified multistage household serosurvey among residents aged between 5 and 65 years in the city of Recife, Northeast Brazil, from August 2018 to February 2019. The city neighborhoods were stratified and divided into high, intermediate, and low socioeconomic strata (SES). Previous ZIKV, DENV and CHIKV infections were detected by IgG-based enzyme linked immunosorbent assays (ELISA). Recent ZIKV and CHIKV infections were assessed through IgG3 and IgM ELISA, respectively. Design-adjusted seroprevalence were estimated by age group, sex, and SES. The ZIKV seroprevalence was adjusted to account for the cross-reactivity with dengue. Individual and household-related risk factors were analyzed through regression models to calculate the force of infection. Odds Ratio (OR) were estimated as measure of effect. PRINCIPAL FINDINGS: A total of 2,070 residents' samples were collected and analyzed. The force of viral infection for high SES were lower as compared to low and intermediate SES. DENV seroprevalence was 88.7% (CI95%:87.0-90.4), and ranged from 81.2% (CI95%:76.9-85.6) in the high SES to 90.7% (CI95%:88.3-93.2) in the low SES. The overall adjusted ZIKV seroprevalence was 34.6% (CI95%:20.0-50.9), and ranged from 47.4% (CI95%:31.8-61.5) in the low SES to 23.4% (CI95%:12.2-33.8) in the high SES. The overall CHIKV seroprevalence was 35.7% (CI95%:32.6-38.9), and ranged from 38.6% (CI95%:33.6-43.6) in the low SES to 22.3% (CI95%:15.8-28.8) in the high SES. Surprisingly, ZIKV seroprevalence rapidly increased with age in the low and intermediate SES, while exhibited only a small increase with age in high SES. CHIKV seroprevalence according to age was stable in all SES. The prevalence of serological markers of ZIKV and CHIKV recent infections were 1.5% (CI95%:0.1-3.7) and 3.5% (CI95%:2.7-4.2), respectively. CONCLUSIONS: Our results confirmed continued DENV transmission and intense ZIKV and CHIKV transmission during the 2015/2016 epidemics followed by ongoing low-level transmission. The study also highlights that a significant proportion of the population is still susceptible to be infected by ZIKV and CHIKV. The reasons underlying a ceasing of the ZIKV epidemic in 2017/18 and the impact of antibody decay in susceptibility to future DENV and ZIKV infections may be related to the interplay between disease transmission mechanism and actual exposure in the different SES.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue Virus , Dengue , Epidemics , Microcephaly , Zika Virus Infection , Zika Virus , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Brazil/epidemiology , Seroepidemiologic Studies , Microcephaly/epidemiology
8.
ACS Bio Med Chem Au ; 3(2): 211-222, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37101811

ABSTRACT

Arboviral infections such as Zika, chikungunya, dengue, and yellow fever pose significant health problems globally. The population at risk is expanding with the geographical distribution of the main transmission vector of these viruses, the Aedes aegypti mosquito. The global spreading of this mosquito is driven by human migration, urbanization, climate change, and the ecological plasticity of the species. Currently, there are no specific treatments for Aedes-borne infections. One strategy to combat different mosquito-borne arboviruses is to design molecules that can specifically inhibit a critical host protein. We obtained the crystal structure of 3-hydroxykynurenine transaminase (AeHKT) from A. aegypti, an essential detoxification enzyme of the tryptophan metabolism pathway. Since AeHKT is found exclusively in mosquitoes, it provides the ideal molecular target for the development of inhibitors. Therefore, we determined and compared the free binding energy of the inhibitors 4-(2-aminophenyl)-4-oxobutyric acid (4OB) and sodium 4-(3-phenyl-1,2,4-oxadiazol-5-yl)butanoate (OXA) to AeHKT and AgHKT from Anopheles gambiae, the only crystal structure of this enzyme previously known. The cocrystallized inhibitor 4OB binds to AgHKT with K i of 300 µM. We showed that OXA binds to both AeHKT and AgHKT enzymes with binding energies 2-fold more favorable than the crystallographic inhibitor 4OB and displayed a 2-fold greater residence time τ upon binding to AeHKT than 4OB. These findings indicate that the 1,2,4-oxadiazole derivatives are inhibitors of the HKT enzyme not only from A. aegypti but also from A. gambiae.

9.
Phys Chem Chem Phys ; 25(10): 7257-7267, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36810523

ABSTRACT

The prediction of the free energy (ΔG) of binding for protein-protein complexes is of general scientific interest as it has a variety of applications in the fields of molecular and chemical biology, materials science, and biotechnology. Despite its centrality in understanding protein association phenomena and protein engineering, the ΔG of binding is a daunting quantity to obtain theoretically. In this work, we devise a novel Artificial Neural Network (ANN) model to predict the ΔG of binding for a given three-dimensional structure of a protein-protein complex with Rosetta-calculated properties. Our model was tested using two data sets, and it presented a root-mean-square error ranging from 1.67 kcal mol-1 to 2.45 kcal mol-1, showing a better performance compared to the available state-of-the-art tools. Validation of the model for a variety of protein-protein complexes is showcased.


Subject(s)
Neural Networks, Computer , Proteins , Thermodynamics , Proteins/chemistry , Entropy , Protein Binding
10.
J Biomol Struct Dyn ; 41(9): 3835-3846, 2023 06.
Article in English | MEDLINE | ID: mdl-35356863

ABSTRACT

Herein we describe the use of molecular docking simulations, quantitative structure-activity relationships studies and ADMETox predictions to analyse the molecular recognition of a series of 7-aryl-2,4-diaminoquinazoline derivatives on the inhibition of Staphylococcus aureus dihydrofolate reductase and conducted a virtual screening to discover new potential inhibitors. A quantitative structure-activity relationship model was developed using 40 compounds and two selected descriptors. These descriptors indicated the importance of pKa and molar refractivity for the inhibitory activity against SaDHFR. The values of R2train, CVLOO and R2test generated by the model were 0.808, 0.766, and 0.785, respectively. The integration between QSAR, molecular docking, ADMETox analysis and molecular dynamics simulations with binding free energies calculation, yielded the compounds PC-124127620, PC-124127795 and PC-124127805 as promising candidates to SaDHFR inhibitors. These compounds presented high potency, good pharmacokinetics and toxicological profile. Thus, these molecules are good potential antimicrobial agent to treatment of infect disease caused by S. aureus.Communicated by Ramaswamy H. Sarma.


Subject(s)
Folic Acid Antagonists , Staphylococcus aureus , Folic Acid Antagonists/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Staphylococcus aureus/chemistry
11.
Biopolymers ; 113(10): e23524, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36281776

ABSTRACT

Human papillomavirus (HPV) is recognized as the causative agent of cervical cancer in women, and it is associated with other anogenital and head/neck cancers. More than 120 types of HPV have been identified and many classified as high- or low-risk according to their oncogenic potential. One of its proteins, E6, has evolved to overcome the oncosuppressor functions of p53 by targeting this protein for degradation via interaction with the human ubiquitin-ligase E6AP. This study evaluates the correlation between the association strength of 40 HPV E6 types to the E6AP/p53 complex and the HPV oncogenesis risk using molecular simulations and machine and deep learning (ML/DL). In addition, a ML/DL-driven prediction is proposed for the HPV unclassified oncogenic risk type. The results indicate that thermodynamics play a pivotal role in the establishment of HPV-associated cancer and highlight the need to include some viral types in the HPV-related cancer surveillance and prevention strategies.


Subject(s)
Alphapapillomavirus , Neoplasms , Oncogene Proteins, Viral , Papillomavirus Infections , Female , Humans , Papillomaviridae/metabolism , Oncogene Proteins, Viral/metabolism , Tumor Suppressor Protein p53/metabolism , Papillomavirus Infections/complications , Alphapapillomavirus/metabolism , Ubiquitin-Protein Ligases/metabolism , Carcinogenesis , Ubiquitin/metabolism
12.
Vaccines (Basel) ; 10(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36016134

ABSTRACT

Neonates have a limited adaptive response of plasma cells, germinal center (GC) B cells, and T follicular helper cells (TFH). As neonatal vaccination can be an important tool for AIDS prevention, these limitations need to be overcome. Chimeric DNA vaccine encoding p55Gag HIV-1 protein conjugated with lysosomal-associated membrane protein 1 (LAMP-1) has been described as immunogenic in the neonate period. Herein, we investigated the immunologic mechanisms involved in neonatal immunization with a LAMP-1/p55Gag (LAMP/Gag) DNA vaccine in a C57BL/6 mouse background. Neonatal LAMP/Gag vaccination induced strong Gag-specific T-cell response until adulthood and elevated levels of anti-Gag IgG antibodies. We also demonstrated for the first time that the immunogenicity of the neonatal period with LAMP/Gag is due to the induction of high-affinity anti-p24 IgG antibodies and long-term plasma cells. Together with that, there is the generation of early TFH cells and the formation of GC sites with the upregulation of activation-induced cytidine deaminase (AID) enzyme mRNA and protein expression in draining lymph nodes after neonatal LAMP/Gag vaccination. These findings underscore that the LAMP-1 strategy in the chimeric vaccine could be useful to enhance antibody production even in the face of neonatal immaturity, and they contribute to the development of new vaccine approaches for other emerging pathogens at an early stage of life.

13.
Glycoconj J ; 39(5): 653-661, 2022 10.
Article in English | MEDLINE | ID: mdl-35536494

ABSTRACT

At cell surface gangliosides might associate with signal transducers proteins, grown factor receptors, integrins, small G-proteins and tetraspanins establishing microdomains, which play important role in cell adhesion, cell activation, motility, and growth. Previously, we reported that GM2 and GM3 form a heterodimer that interacts with the tetraspanin CD82, controlling epithelial cell mobility by inhibiting integrin-hepatocyte growth factor-induced cMet tyrosine kinase signaling. By using molecular dynamics simulations to study the molecular basis of GM2/GM3 interaction we demonstrate, here, that intracellular levels of Ca2+ mediate GM2/GM3 complexation via electrostatic interaction with their carboxyl groups, while hydrogen bonds between the ceramide groups likely aid stabilizing the complex. The presence of GM2/GM3 complex alters localization of CD82 on cell surface and therefore downstream signalization. These data contribute for the knowledge of how glycosylation may control signal transduction and phenotypic changes.


Subject(s)
G(M3) Ganglioside , Kangai-1 Protein , Cell Adhesion , Cell Movement , Kangai-1 Protein/metabolism , Signal Transduction
14.
Microbiol Spectr ; 10(1): e0236621, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196783

ABSTRACT

The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly Δ144 or Δ141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we did not find an increased incidence of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sublineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting more infectious variants or antibody evasion mutations is expected to increase. IMPORTANCE The continuous evolution of SARS-CoV-2 is an expected phenomenon that will continue to happen due to the high number of cases worldwide. The present study analyzed how a Variant of Concern (VOC) could still circulate in a population hardly affected by two COVID-19 waves and with vaccination in progress. Our results showed that the answer behind that was a new generation of Gamma-like viruses, which emerged locally carrying mutations that made it more transmissible and more capable of spreading, partially evading prior immunity triggered by natural infections or vaccines. With thousands of new cases daily, the current pandemics scenario suggests that SARS-CoV-2 will continue to evolve and efforts to reduce the number of infected subjects, including global equitable access to COVID-19 vaccines, are mandatory. Thus, until the end of pandemics, the SARS-CoV-2 genomic surveillance will be an essential tool to better understand the drivers of the viral evolutionary process.


Subject(s)
COVID-19/enzymology , Furin/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Motifs , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Furin/genetics , Genomics , Humans , Mutation , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
15.
Clinics (Sao Paulo) ; 76: e3548, 2021.
Article in English | MEDLINE | ID: mdl-34878034

ABSTRACT

OBJECTIVES: In this preliminary study we investigated cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in blood samples from 14 recovered coronavirus disease 2019 (COVID-19) patients and compared them to those in samples from 12 uninfected/unvaccinated volunteers. METHODS: Cellular immunity was assessed by intracellular detection of IFN-γ in CD3+ T lymphocytes after stimulation with SARS-CoV-2 spike (S1), nucleocapsid (NC), or receptor-binding domain (RBD) recombinant proteins or overlapping peptide pools covering the sequence of SARS-CoV-2 spike, membrane and nucleocapsid regions. The humoral response was examined by ELISAs and/or chemiluminescence assays for the presence of serum IgG antibodies directed to SARS-CoV-2 proteins. RESULTS: We observed differences between humoral and cellular immune profiles in response to stimulation with the same proteins. Assays of IgG antibodies directed to SARS-CoV-2 NC, RBD and S1/S2 recombinant proteins were able to differentiate convalescent from uninfected/unvaccinated groups. Cellular immune responses to SARS-CoV-2 protein stimuli did not exhibit a specific response, as T cells from both individuals with no history of contact with SARS-CoV-2 and from recovered donors were able to produce IFN-γ. CONCLUSIONS: Determination of the cellular immune response to stimulation with a pool of SARS-CoV-2 peptides but not with SARS-CoV-2 proteins is able to distinguish convalescent individuals from unexposed individuals. Regarding the humoral immune response, the screening for serum IgG antibodies directed to SARS-CoV-2 proteins has been shown to be specific for the response of recovered individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunity, Humoral , Recombinant Proteins , Spike Glycoprotein, Coronavirus
16.
RSC Med Chem ; 12(9): 1525-1539, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34671736

ABSTRACT

The identification of specific biomarkers for Zika infection and its clinical complications is fundamental to mitigate the infection spread, which has been associated with a broad range of neurological sequelae. We present the characterization of antibody responses in serum samples from individuals infected with Zika, presenting non-severe (classical) and severe (neurological disease) phenotypes, with high-density peptide arrays comprising the Zika NS1 and NS2B proteins. The data pinpoints one strongly IgG-targeted NS2B epitope in non-severe infections, which is absent in Zika patients, where infection progressed to the severe phenotype. This differential IgG profile between the studied groups was confirmed by multivariate data analysis. Molecular dynamics simulations and circular dichroism have shown that the peptide in solution presents itself in a sub-optimal conformation for antibody recognition, which led us to computationally engineer an artificial protein able to stabilize the NS2B epitope structure. The engineered protein was used to interrogate paired samples from mothers and their babies presenting Zika-associated microcephaly and confirmed the absence of NS2B IgG response in those samples. These findings suggest that the assessment of antibody responses to the herein identified NS2B epitope is a strong candidate biomarker for the diagnosis and prognosis of Zika-associated neurological disease.

17.
Virus Evol ; 7(2): veab069, 2021.
Article in English | MEDLINE | ID: mdl-34532067

ABSTRACT

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. Importantly, we detected the community transmission of different P.1 lineages bearing NTD indels ∆69-70 (which can impact several SARS-CoV-2 diagnostic protocols), ∆144 and ins214ANRN, and a new VOI N.10 derived from the B.1.1.33 lineage carrying three NTD deletions (∆141-144, ∆211, and ∆256-258). These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil generates new viral lineages that might be more resistant to antibody neutralization than parental variants of concern.

18.
J Neuroimmunol ; 360: 577697, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34461359

ABSTRACT

Zika virus (ZIKV) infection has been associated with the development of Neuromyelitis Optica Spectrum Disorder (NMOSD). ZIKV-induced antibodies that putatively cross-react to aquaporin-4 (AQP4) protein are suggested to cause inflammation of the optic nerve. A region of similarity between AQP4 and the ZIKV NS2B protein was identified. Our data showed that ZIKV-associated NMOSD patients develop anti-AQP4 antibodies, but not anti-ZIKV NS2B antibodies, revealing that cross-reacting antibodies are not the underlying cause of this phenotype. ZIKV infection in mice showed persistent viral replication in the eye tissue, suggesting that NMOSD symptoms are consequence of viral infection of the optic nerve cells.


Subject(s)
Antibodies, Viral/immunology , Aquaporin 4/immunology , Autoantibodies/immunology , Neuromyelitis Optica/immunology , Zika Virus/immunology , Animals , Antibodies, Viral/blood , Autoantibodies/blood , Cross Reactions , Epitopes/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred C57BL , Molecular Mimicry , Neuromyelitis Optica/etiology , Optic Nerve/virology , Viral Nonstructural Proteins/immunology , Virus Replication , Zika Virus/physiology , Zika Virus Infection/complications , Zika Virus Infection/immunology , Zika Virus Infection/virology
19.
J Fungi (Basel) ; 7(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071195

ABSTRACT

The repurposing strategy was applied herein to evaluate the effects of lopinavir, an aspartic protease inhibitor currently used in the treatment of HIV-infected individuals, on the globally widespread opportunistic human fungal pathogen Candida albicans by using in silico, in vitro and in vivo approaches in order to decipher its targets on fungal cells and its antifungal mechanisms of action. Secreted aspartic proteases (Saps) are the obviously main target of lopinavir. To confirm this hypothesis, molecular docking assays revealed that lopinavir bound to the Sap2 catalytic site of C. albicans as well as inhibited the Sap hydrolytic activity in a typically dose-dependent manner. The inhibition of Saps culminated in the inability of C. albicans yeasts to assimilate the unique nitrogen source (albumin) available in the culture medium, culminating with fungal growth inhibition (IC50 = 39.8 µM). The antifungal action of lopinavir was corroborated by distinct microscopy analyses, which evidenced drastic and irreversible changes in the morphology that justified the fungal death. Furthermore, our results revealed that lopinavir was able to (i) arrest the yeasts-into-hyphae transformation, (ii) disturb the synthesis of neutral lipids, including ergosterol, (iii) modulate the surface-located molecules, such as Saps and mannose-, sialic acid- and N-acetylglucosamine-containing glycoconjugates, (iv) diminish the secretion of hydrolytic enzymes, such as Saps and esterase, (v) negatively influence the biofilm formation on polystyrene surface, (vi) block the in vitro adhesion to epithelial cells, (vii) contain the in vivo infection in both immunocompetent and immunosuppressed mice and (viii) reduce the Sap production by yeasts recovered from kidneys of infected animals. Conclusively, the exposed results highlight that lopinavir may be used as a promising repurposing drug against C. albicans infection as well as may be used as a lead compound for the development of novel antifungal drugs.

20.
Chem Commun (Camb) ; 57(49): 6094-6097, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34037640

ABSTRACT

SARS-CoV-2 VOC immune evasion is mainly due to lower cross-reactivity from previously elicited class I/II neutralizing antibodies, while increased affinity to hACE2 plays a minor role. The affinity between antibodies and VOCs is impacted by remodeling of the electrostatic surface potential of the Spike RBDs. The P.3 variant is a putative VOC.


Subject(s)
Antibodies, Neutralizing/immunology , Antibody Affinity/genetics , Immune Evasion/genetics , SARS-CoV-2/immunology , Antibody Affinity/immunology , Cross Reactions/genetics , Models, Molecular , Protein Domains , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...