Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Front Immunol ; 15: 1307546, 2024.
Article in English | MEDLINE | ID: mdl-38361945

ABSTRACT

Zika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_ΔSTP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_ΔSTP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-ΔSTP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_ΔSTP+Alum protected adult mice upon viral challenge. Collectively, the ZK_ΔSTP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies.


Subject(s)
Alum Compounds , Vaccines, DNA , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Mice , Zika Virus/genetics , Antibodies, Neutralizing , Antibodies, Viral , Viral Envelope Proteins/genetics , Mice, Inbred C57BL , Adjuvants, Immunologic , Adjuvants, Pharmaceutic
3.
J Biomol Struct Dyn ; 41(9): 3835-3846, 2023 06.
Article in English | MEDLINE | ID: mdl-35356863

ABSTRACT

Herein we describe the use of molecular docking simulations, quantitative structure-activity relationships studies and ADMETox predictions to analyse the molecular recognition of a series of 7-aryl-2,4-diaminoquinazoline derivatives on the inhibition of Staphylococcus aureus dihydrofolate reductase and conducted a virtual screening to discover new potential inhibitors. A quantitative structure-activity relationship model was developed using 40 compounds and two selected descriptors. These descriptors indicated the importance of pKa and molar refractivity for the inhibitory activity against SaDHFR. The values of R2train, CVLOO and R2test generated by the model were 0.808, 0.766, and 0.785, respectively. The integration between QSAR, molecular docking, ADMETox analysis and molecular dynamics simulations with binding free energies calculation, yielded the compounds PC-124127620, PC-124127795 and PC-124127805 as promising candidates to SaDHFR inhibitors. These compounds presented high potency, good pharmacokinetics and toxicological profile. Thus, these molecules are good potential antimicrobial agent to treatment of infect disease caused by S. aureus.Communicated by Ramaswamy H. Sarma.


Subject(s)
Folic Acid Antagonists , Staphylococcus aureus , Folic Acid Antagonists/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Staphylococcus aureus/chemistry
4.
Biopolymers ; 113(10): e23524, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36281776

ABSTRACT

Human papillomavirus (HPV) is recognized as the causative agent of cervical cancer in women, and it is associated with other anogenital and head/neck cancers. More than 120 types of HPV have been identified and many classified as high- or low-risk according to their oncogenic potential. One of its proteins, E6, has evolved to overcome the oncosuppressor functions of p53 by targeting this protein for degradation via interaction with the human ubiquitin-ligase E6AP. This study evaluates the correlation between the association strength of 40 HPV E6 types to the E6AP/p53 complex and the HPV oncogenesis risk using molecular simulations and machine and deep learning (ML/DL). In addition, a ML/DL-driven prediction is proposed for the HPV unclassified oncogenic risk type. The results indicate that thermodynamics play a pivotal role in the establishment of HPV-associated cancer and highlight the need to include some viral types in the HPV-related cancer surveillance and prevention strategies.


Subject(s)
Alphapapillomavirus , Neoplasms , Oncogene Proteins, Viral , Papillomavirus Infections , Female , Humans , Papillomaviridae/metabolism , Oncogene Proteins, Viral/metabolism , Tumor Suppressor Protein p53/metabolism , Papillomavirus Infections/complications , Alphapapillomavirus/metabolism , Ubiquitin-Protein Ligases/metabolism , Carcinogenesis , Ubiquitin/metabolism
5.
Vaccines (Basel) ; 10(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36016134

ABSTRACT

Neonates have a limited adaptive response of plasma cells, germinal center (GC) B cells, and T follicular helper cells (TFH). As neonatal vaccination can be an important tool for AIDS prevention, these limitations need to be overcome. Chimeric DNA vaccine encoding p55Gag HIV-1 protein conjugated with lysosomal-associated membrane protein 1 (LAMP-1) has been described as immunogenic in the neonate period. Herein, we investigated the immunologic mechanisms involved in neonatal immunization with a LAMP-1/p55Gag (LAMP/Gag) DNA vaccine in a C57BL/6 mouse background. Neonatal LAMP/Gag vaccination induced strong Gag-specific T-cell response until adulthood and elevated levels of anti-Gag IgG antibodies. We also demonstrated for the first time that the immunogenicity of the neonatal period with LAMP/Gag is due to the induction of high-affinity anti-p24 IgG antibodies and long-term plasma cells. Together with that, there is the generation of early TFH cells and the formation of GC sites with the upregulation of activation-induced cytidine deaminase (AID) enzyme mRNA and protein expression in draining lymph nodes after neonatal LAMP/Gag vaccination. These findings underscore that the LAMP-1 strategy in the chimeric vaccine could be useful to enhance antibody production even in the face of neonatal immaturity, and they contribute to the development of new vaccine approaches for other emerging pathogens at an early stage of life.

6.
Clinics (Sao Paulo) ; 76: e3548, 2021.
Article in English | MEDLINE | ID: mdl-34878034

ABSTRACT

OBJECTIVES: In this preliminary study we investigated cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in blood samples from 14 recovered coronavirus disease 2019 (COVID-19) patients and compared them to those in samples from 12 uninfected/unvaccinated volunteers. METHODS: Cellular immunity was assessed by intracellular detection of IFN-γ in CD3+ T lymphocytes after stimulation with SARS-CoV-2 spike (S1), nucleocapsid (NC), or receptor-binding domain (RBD) recombinant proteins or overlapping peptide pools covering the sequence of SARS-CoV-2 spike, membrane and nucleocapsid regions. The humoral response was examined by ELISAs and/or chemiluminescence assays for the presence of serum IgG antibodies directed to SARS-CoV-2 proteins. RESULTS: We observed differences between humoral and cellular immune profiles in response to stimulation with the same proteins. Assays of IgG antibodies directed to SARS-CoV-2 NC, RBD and S1/S2 recombinant proteins were able to differentiate convalescent from uninfected/unvaccinated groups. Cellular immune responses to SARS-CoV-2 protein stimuli did not exhibit a specific response, as T cells from both individuals with no history of contact with SARS-CoV-2 and from recovered donors were able to produce IFN-γ. CONCLUSIONS: Determination of the cellular immune response to stimulation with a pool of SARS-CoV-2 peptides but not with SARS-CoV-2 proteins is able to distinguish convalescent individuals from unexposed individuals. Regarding the humoral immune response, the screening for serum IgG antibodies directed to SARS-CoV-2 proteins has been shown to be specific for the response of recovered individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunity, Humoral , Recombinant Proteins , Spike Glycoprotein, Coronavirus
7.
Clinics ; 76: e3548, 2021. tab, graf
Article in English | LILACS | ID: biblio-1350616

ABSTRACT

OBJECTIVES: In this preliminary study we investigated cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in blood samples from 14 recovered coronavirus disease 2019 (COVID-19) patients and compared them to those in samples from 12 uninfected/unvaccinated volunteers. METHODS: Cellular immunity was assessed by intracellular detection of IFN-γ in CD3+ T lymphocytes after stimulation with SARS-CoV-2 spike (S1), nucleocapsid (NC), or receptor-binding domain (RBD) recombinant proteins or overlapping peptide pools covering the sequence of SARS-CoV-2 spike, membrane and nucleocapsid regions. The humoral response was examined by ELISAs and/or chemiluminescence assays for the presence of serum IgG antibodies directed to SARS-CoV-2 proteins. RESULTS: We observed differences between humoral and cellular immune profiles in response to stimulation with the same proteins. Assays of IgG antibodies directed to SARS-CoV-2 NC, RBD and S1/S2 recombinant proteins were able to differentiate convalescent from uninfected/unvaccinated groups. Cellular immune responses to SARS-CoV-2 protein stimuli did not exhibit a specific response, as T cells from both individuals with no history of contact with SARS-CoV-2 and from recovered donors were able to produce IFN-γ. CONCLUSIONS: Determination of the cellular immune response to stimulation with a pool of SARS-CoV-2 peptides but not with SARS-CoV-2 proteins is able to distinguish convalescent individuals from unexposed individuals. Regarding the humoral immune response, the screening for serum IgG antibodies directed to SARS-CoV-2 proteins has been shown to be specific for the response of recovered individuals.


Subject(s)
Humans , SARS-CoV-2 , COVID-19 , Recombinant Proteins , Immunity, Humoral , Spike Glycoprotein, Coronavirus , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...