Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 114(12): 4230-7, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20201501

ABSTRACT

We used Monte Carlo simulations and biophysical measurements to study the interaction of NKCS, a derivative of the antimicrobial peptide NK-2, with a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membrane. The simulations showed that NKCS adsorbed on the membrane surface and the dominant conformation featured two amphipathic helices connected by a hinge region. We designed two mutants in the hinge to investigate the interplay between helicity and membrane affinity. Simulations with a Leu-to-Pro substitution showed that the helicity and membrane affinity of the mutant (NKCS-[LP]) decreased. Two Ala residues were added to NKCS to produce a sequence that is compatible with a continuous amphipathic helix structure (NKCS-[AA]), and the simulations showed that the mutant adsorbed on the membrane surface with a particularly high affinity. The circular dichroism spectra of the three peptides also showed that NKCS-[LP] is the least helical and NKCS-[AA] is the most. However, the activity of the peptides, determined in terms of their antimicrobial potency and influence on the temperature of the transition of the lipid to hexagonal phase, displayed a complex behavior: NKCS-[LP] was the least potent and had the smallest influence on the transition temperature, and NKCS was the most potent and had the largest effect on the temperature.


Subject(s)
Anti-Infective Agents/chemistry , Membranes, Artificial , Peptides/chemistry , Amino Acid Sequence , Circular Dichroism , Molecular Sequence Data , Scattering, Radiation , Surface Plasmon Resonance
2.
Macromol Biosci ; 8(10): 903-15, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-18785211

ABSTRACT

Cationic amphiphilic polymers were prepared from PEI and functional ethylene carbonates bearing cationic, hydrophobic or amphiphilic groups. The polymers are designed to exhibit antimicrobial properties. In a one-step addition, different functional ethylene carbonates were added to react with the primary amine groups of PEI. The water soluble polymers were studied regarding their ability to form soluble aggregates. Their hydrodynamic radii, their inhibition potential against proliferation of E. coli and their hemolytic potential were determined. A structure-property relationship was established by analyzing the antimicrobial activity as a function of the ratio of alkyl to cationic groups, length of the alkyl chains, and molecular weight of the PEI.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Carbonates/chemistry , Escherichia coli/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Molecular Weight , Polyamines/chemical synthesis , Polyamines/chemistry , Polyelectrolytes
3.
Chem Phys Lipids ; 151(1): 18-29, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17963700

ABSTRACT

The structural polymorphism of two selected disaccharide glycolipids with a maltose (DMMA) and a melibiose (DMME) carbohydrate headgroup linked to dimyristyl alkyl chains were investigated by FTIR-spectroscopy, differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and film-balance measurements. The compounds displayed thermotropic multilamellar phases. In the gel phase, DMMA formed also a crystalline phase of orthorhombic symmetry, and DMME an interdigitated phase. The gel to liquid crystalline phase transition temperature T(c) of DMMA depended on the storage and hydration conditions, a precooled sample having a T(c) around 45 degrees C, and a freshly prepared sample around 33 degrees C. In contrast, the phase transition temperature for the gel to liquid crystalline phase of DMME was always found at 24 degrees C. Surface pressure isotherms of the lipids on water and buffer showed that DMMA covers only a small surface area (approximately 35A(2)) whereas DMME requires 50 A(2) of space on the surface. Films of DMMA can be compressed up to a maximum compressibility Pi(max) of 54 mN m(-1) whereas the tilted DMME forms less stable films with Pi(max) of 34 mN m(-1). These different structural characteristics reflect the different conformations of the disaccharide head groups. The presence of the alpha1-->4 linked maltose head group in DMMA and an alpha1-->6 linked melibiose head group in DMME induces geometrical structures ranging from a slightly wedge-shaped towards a more tilted structure, and as a consequence of Israelachvilis packing model, to the formation of different phases. In addition, the structural constraints of DMME allow the formation of a phase with interdigitated hydrocarbon chains.


Subject(s)
Disaccharides/chemistry , Glycolipids/chemistry , Calorimetry, Differential Scanning , Scattering, Small Angle , Spectroscopy, Fourier Transform Infrared , Unilamellar Liposomes , X-Ray Diffraction
4.
J Phys Chem B ; 110(8): 3527-32, 2006 Mar 02.
Article in English | MEDLINE | ID: mdl-16494408

ABSTRACT

Membranes are a central feature of all biological systems, and their ability to control many cellular processes is critically important. As a result, a better understanding of how molecules bind to and select between biological membranes is an active area of research. Antimicrobial host defense peptides are known to be membrane-active and, in many cases, exhibit discrimination between prokaryotic and eukaryotic cells. The design of synthetic molecules that capture the biological activity of these natural peptides has been shown. In this report, the interaction between our biomimetic structures and different biological membranes is reported using both model vesicle and in vitro bacterial cell experiments. Compound 1 induces 12% leakage at 20 microg/mL against phosphatidylglycerol (PG)-phosphatidylethanolamine (PE) vesicles vs only 3% leakage at 200 microg/mL against phosphatidyl-L-serine (PS)-phosphatidylcholine (PC) vesicles. Similarly, a 40% reduction in fluorescence is measured in lipid movement experiments for PG-PE compared to 10% for PS-PC at 600 s. A 30 degrees C increase in the phase transition of stearoyl-oleoyl-phosphatidylserine is observed in the presence of 1. These results show that lipid composition is more important for selectivity than overall net charge. Additionally, the overall concentration of a given lipid is another important factor. An effort is made to connect model vesicle studies with in vitro data and naturally occurring lipid compositions.


Subject(s)
Anti-Bacterial Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , Biomimetics , Lipid Bilayers/metabolism , Algorithms , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Biological Transport , Eukaryotic Cells/metabolism , Lipid Bilayers/chemistry , Models, Biological , Phase Transition , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Prokaryotic Cells/metabolism , Temperature , Time Factors
5.
Biochim Biophys Acta ; 1669(2): 125-34, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15893515

ABSTRACT

We have developed a novel alpha-helical peptide antibiotic termed NK-2. It efficiently kills bacteria, but not human cells, by membrane destruction. This selectivity could be attributed to the different membrane lipid compositions of the target cells. To understand the mechanisms of selectivity and membrane destruction, we investigated the influence of NK-2 on the supramolecular aggregate structure, the phase transition behavior, the acyl chain fluidity, and the surface charges of phospholipids representative for the bacterial and the human cell cytoplasmic membranes. The cationic NK-2 binds to anionic phosphatidylglycerol liposomes, causing a thinning of the membrane and an increase in the phase transition temperature. However, this interaction is not solely of electrostatic but also of hydrophobic nature, indicated by an overcompensation of the Zeta potential. Whereas NK-2 has no effect on phosphatidylcholine liposomes, it enhances the fluidity of phosphatidylethanolamine acyl chains and lowers the phase transition enthalpy of the gel to liquid cristalline transition. The most dramatic effect, however, was observed for the lamellar/inverted hexagonal transition of phosphatidylethanolamine which was reduced by more than 10 degrees C. Thus, NK-2 promotes a negative membrane curvature which can lead to the collapse of the phosphatidylethanolamine-rich bacterial cytoplasmic membrane.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Models, Biological , Peptides/pharmacology , Humans , Liposomes/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Phosphatidylglycerols/metabolism , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...